Interactive Framework for Insect Tracking with Active Learning

Thumbnail Image
Date
2014
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Contribution to a conference collection
Publication status
Published in
22nd International Conference on Pattern Recognition : 24-28 August 2014, Stockholm, Sweden / IEEE (ed.). - IEEE, 2014. - pp. 2733-2738. - ISBN 978-1-4799-5209-0
Abstract
Extracting motion trajectories of insects is an important prerequisite in many behavioral studies. Despite great efforts to design efficient automatic tracking algorithms, tracking errors are unavoidable. In this paper, we propose general principles that help to minimize the human effort required for accurate multi-target tracking in the form of applications that can track the antennae and mouthparts of a honey bee based on a set of low frame rate videos. This interactive framework estimates which key frames will require user correction, i.e. those that are used for user correction, which are used for 1) incrementally learning an object classifier and 2) data association based tracking. To this framework we apply a standard classification algorithm (i.e. naive Bayesian classification) and an association optimization algorithm (i.e. Hungarian algorithm). The precision of tracking results by our framework on real-world video data is above 98%.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Conference
International Conference on Pattern Recognition, Aug 24, 2014 - Aug 28, 2014, Stockholm
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690SHEN, Minmin, Wei HUANG, Paul SZYSZKA, C. Giovanni GALIZIA, Dorit MERHOF, 2014. Interactive Framework for Insect Tracking with Active Learning. International Conference on Pattern Recognition. Stockholm, Aug 24, 2014 - Aug 28, 2014. In: IEEE, , ed.. 22nd International Conference on Pattern Recognition : 24-28 August 2014, Stockholm, Sweden. IEEE, pp. 2733-2738. ISBN 978-1-4799-5209-0. Available under: doi: 10.1109/ICPR.2014.471
BibTex
@inproceedings{Shen2014Inter-30288,
  year={2014},
  doi={10.1109/ICPR.2014.471},
  title={Interactive Framework for Insect Tracking with Active Learning},
  isbn={978-1-4799-5209-0},
  publisher={IEEE},
  booktitle={22nd International Conference on Pattern Recognition : 24-28 August 2014, Stockholm, Sweden},
  pages={2733--2738},
  editor={IEEE},
  author={Shen, Minmin and Huang, Wei and Szyszka, Paul and Galizia, C. Giovanni and Merhof, Dorit}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30288">
    <dcterms:abstract xml:lang="eng">Extracting motion trajectories of insects is an important prerequisite in many behavioral studies. Despite great efforts to design efficient automatic tracking algorithms, tracking errors are unavoidable. In this paper, we propose general principles that help to minimize the human effort required for accurate multi-target tracking in the form of applications that can track the antennae and mouthparts of a honey bee based on a set of low frame rate videos. This interactive framework estimates which key frames will require user correction, i.e. those that are used for user correction, which are used for 1) incrementally learning an object classifier and 2) data association based tracking. To this framework we apply a standard classification algorithm (i.e. naive Bayesian classification) and an association optimization algorithm (i.e. Hungarian algorithm). The precision of tracking results by our framework on real-world video data is above 98%.</dcterms:abstract>
    <dc:creator>Shen, Minmin</dc:creator>
    <dc:creator>Huang, Wei</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dc:language>eng</dc:language>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Merhof, Dorit</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30288"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/30288/1/Shen_0-283364.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-16T10:18:32Z</dc:date>
    <dc:contributor>Huang, Wei</dc:contributor>
    <dcterms:title>Interactive Framework for Insect Tracking with Active Learning</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Galizia, C. Giovanni</dc:creator>
    <dc:creator>Szyszka, Paul</dc:creator>
    <dc:contributor>Szyszka, Paul</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/30288/1/Shen_0-283364.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:contributor>Galizia, C. Giovanni</dc:contributor>
    <dc:contributor>Shen, Minmin</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-16T10:18:32Z</dcterms:available>
    <dcterms:issued>2014</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Merhof, Dorit</dc:creator>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed