Interactive Framework for Insect Tracking with Active Learning

Zitieren

Dateien zu dieser Ressource

Prüfsumme: MD5:83b1eaff0180b66d96a15414878f0fba

SHEN, Minmin, Wei HUANG, Paul SZYSZKA, C. Giovanni GALIZIA, Dorit MERHOF, 2014. Interactive Framework for Insect Tracking with Active Learning. International Conference on Pattern Recognition. Stockholm, 24. Aug 2014 - 28. Aug 2014. In: IEEE, , ed.. 22nd International Conference on Pattern Recognition : 24-28 August 2014, Stockholm, Sweden. International Conference on Pattern Recognition. Stockholm, 24. Aug 2014 - 28. Aug 2014. IEEE, pp. 2733-2738. ISBN 978-1-4799-5209-0

@inproceedings{Shen2014Inter-30288, title={Interactive Framework for Insect Tracking with Active Learning}, year={2014}, doi={10.1109/ICPR.2014.471}, isbn={978-1-4799-5209-0}, publisher={IEEE}, booktitle={22nd International Conference on Pattern Recognition : 24-28 August 2014, Stockholm, Sweden}, pages={2733--2738}, editor={IEEE}, author={Shen, Minmin and Huang, Wei and Szyszka, Paul and Galizia, C. Giovanni and Merhof, Dorit} }

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/30288"> <dc:contributor>Merhof, Dorit</dc:contributor> <dc:creator>Shen, Minmin</dc:creator> <dc:language>eng</dc:language> <dc:contributor>Galizia, C. Giovanni</dc:contributor> <dc:creator>Merhof, Dorit</dc:creator> <dcterms:title>Interactive Framework for Insect Tracking with Active Learning</dcterms:title> <dcterms:rights rdf:resource="http://nbn-resolving.de/urn:nbn:de:bsz:352-20150914100631302-4485392-8"/> <dc:creator>Huang, Wei</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30288"/> <dcterms:issued>2014</dcterms:issued> <dcterms:abstract xml:lang="eng">Extracting motion trajectories of insects is an important prerequisite in many behavioral studies. Despite great efforts to design efficient automatic tracking algorithms, tracking errors are unavoidable. In this paper, we propose general principles that help to minimize the human effort required for accurate multi-target tracking in the form of applications that can track the antennae and mouthparts of a honey bee based on a set of low frame rate videos. This interactive framework estimates which key frames will require user correction, i.e. those that are used for user correction, which are used for 1) incrementally learning an object classifier and 2) data association based tracking. To this framework we apply a standard classification algorithm (i.e. naive Bayesian classification) and an association optimization algorithm (i.e. Hungarian algorithm). The precision of tracking results by our framework on real-world video data is above 98%.</dcterms:abstract> <dc:contributor>Shen, Minmin</dc:contributor> <dc:contributor>Szyszka, Paul</dc:contributor> <dc:creator>Szyszka, Paul</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-16T10:18:32Z</dcterms:available> <dc:contributor>Huang, Wei</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-16T10:18:32Z</dc:date> <dc:creator>Galizia, C. Giovanni</dc:creator> </rdf:Description> </rdf:RDF>

Dateiabrufe seit 16.03.2015 (Informationen über die Zugriffsstatistik)

Shen_0-283364.pdf 4

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto