KOPS - Das Institutionelle Repositorium der Universität Konstanz

A novel marker-less lung tumor localization strategy on low-rank fluoroscopic images with similarity learning

A novel marker-less lung tumor localization strategy on low-rank fluoroscopic images with similarity learning

Zitieren

Dateien zu dieser Ressource

Dateien Größe Format Anzeige

Zu diesem Dokument gibt es keine Dateien.

HUANG, Wei, Jing LI, Peng ZHANG, Min WAN, Can FANG, Minmin SHEN, 2015. A novel marker-less lung tumor localization strategy on low-rank fluoroscopic images with similarity learning. In: Multimedia Tools and Applications. 74(23), pp. 10535-10558. ISSN 1380-7501. eISSN 1573-7721. Available under: doi: 10.1007/s11042-014-2186-9

@article{Huang2015-12novel-30224, title={A novel marker-less lung tumor localization strategy on low-rank fluoroscopic images with similarity learning}, year={2015}, doi={10.1007/s11042-014-2186-9}, number={23}, volume={74}, issn={1380-7501}, journal={Multimedia Tools and Applications}, pages={10535--10558}, author={Huang, Wei and Li, Jing and Zhang, Peng and Wan, Min and Fang, Can and Shen, Minmin} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/30224"> <dc:creator>Fang, Can</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30224"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-12T07:51:39Z</dc:date> <dcterms:abstract xml:lang="eng">Fluoroscopic images depicting the movement of lung tumor lesions along with patients’ respirations are essential in contemporary image-guided lung cancer radiotherapy, as the accurate delivery of radiation dose on lung tumor lesions can be facilitated with the help of fluoroscopic images. However, the quality of fluoroscopic images is often not high, and several factors including image noise, artifact, ribs occlusion often prevent the tumor lesion from being accurate localized. In this study, a novel marker-less lung tumor localization strategy is proposed. Unlike conventional lung tumor localization strategies, it doesn’t require placing external surrogates on patients or implanting internal fiducial markers in patients. Thus ambiguous movement correlations between moving tumor lesions and surrogates as well as the risk of patients pneumothorax can be totally avoided. In this new strategy, fluoroscopic images are first decomposed into low-rank and sparse components via the split Bregman method, and then spectral clustering techniques are incorporated for similarity learning to realize the tumor localization task. Clinical data obtained from 60 patients with lung tumor lesions is utilized for experimental evaluation, and promising results obtained by the new strategy are demonstrated from the statistical point of view.</dcterms:abstract> <dc:language>eng</dc:language> <dcterms:issued>2015-12</dcterms:issued> <dc:creator>Shen, Minmin</dc:creator> <dc:contributor>Wan, Min</dc:contributor> <dc:creator>Wan, Min</dc:creator> <dc:creator>Li, Jing</dc:creator> <dc:creator>Zhang, Peng</dc:creator> <dc:contributor>Li, Jing</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-12T07:51:39Z</dcterms:available> <dc:contributor>Zhang, Peng</dc:contributor> <dc:contributor>Fang, Can</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:contributor>Shen, Minmin</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:creator>Huang, Wei</dc:creator> <dc:contributor>Huang, Wei</dc:contributor> <dcterms:title>A novel marker-less lung tumor localization strategy on low-rank fluoroscopic images with similarity learning</dcterms:title> </rdf:Description> </rdf:RDF>

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto