KOPS - The Institutional Repository of the University of Konstanz

Identifying Locally Interesting Motifs for Exploration of Scatter Plot Matrices

Identifying Locally Interesting Motifs for Exploration of Scatter Plot Matrices

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

SHAO, Lin, Michael BEHRISCH, Tobias SCHRECK, Ivan SIPIRAN, Bum Chul KWON, Daniel A. KEIM, 2014. Identifying Locally Interesting Motifs for Exploration of Scatter Plot Matrices. Informatik 2014 - Big Data : Komplexität meistern. Stuttgart, Sep 22, 2014 - Sep 26, 2014. In: GI Workshop Big Data Visual Computing – Quantitative Perspectives for Visual Computing, September 22, 2014 Stuttgart, Germany

@inproceedings{Shao2014Ident-30219, title={Identifying Locally Interesting Motifs for Exploration of Scatter Plot Matrices}, year={2014}, booktitle={GI Workshop Big Data Visual Computing – Quantitative Perspectives for Visual Computing, September 22, 2014 Stuttgart, Germany}, author={Shao, Lin and Behrisch, Michael and Schreck, Tobias and Sipiran, Ivan and Kwon, Bum Chul and Keim, Daniel A.} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/30219"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:contributor>Behrisch, Michael</dc:contributor> <dcterms:title>Identifying Locally Interesting Motifs for Exploration of Scatter Plot Matrices</dcterms:title> <dc:creator>Shao, Lin</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:contributor>Sipiran, Ivan</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-11T16:03:56Z</dc:date> <dc:creator>Kwon, Bum Chul</dc:creator> <dc:contributor>Keim, Daniel A.</dc:contributor> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30219"/> <dc:creator>Behrisch, Michael</dc:creator> <dc:creator>Schreck, Tobias</dc:creator> <dc:creator>Sipiran, Ivan</dc:creator> <dcterms:abstract xml:lang="eng">Scatter plots are effective diagrams to visualize distributions, clusters and correlations in two-dimensional data space. For highdimensional data, scatter plot matrices can be formed to show all two-dimensional combinations of dimensions. Several previous approaches for exploration of large scatter plot spaces have focused on ranking and sorting scatter plot matrices based on global patterns. However, often local patterns are of interest for scatter plot exploration. We present a preliminary idea to explore the scatter plot space by identifying significant local patterns (also called motifs in this work). Based on certain clustering algorithms and image-based descriptors, we identify and group a set of similar local candidate motifs in a large scatter plot space.</dcterms:abstract> <dc:contributor>Shao, Lin</dc:contributor> <dc:contributor>Kwon, Bum Chul</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-11T16:03:56Z</dcterms:available> <dc:language>eng</dc:language> <dcterms:issued>2014</dcterms:issued> <dc:creator>Keim, Daniel A.</dc:creator> <dc:contributor>Schreck, Tobias</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


Browse

My Account