KOPS - Das Institutionelle Repositorium der Universität Konstanz

An Oligomeric C-RING Nacre Protein Influences Prenucleation Events and Organizes Mineral Nanoparticles

An Oligomeric C-RING Nacre Protein Influences Prenucleation Events and Organizes Mineral Nanoparticles

Zitieren

Dateien zu dieser Ressource

Dateien Größe Format Anzeige

Zu diesem Dokument gibt es keine Dateien.

PEROVIC, Iva, Andreas VERCH, Eric P. CHANG, Ashit RAO, Helmut CÖLFEN, Roland KRÖGER, John SPENCER-EVANS, 2014. An Oligomeric C-RING Nacre Protein Influences Prenucleation Events and Organizes Mineral Nanoparticles. In: Biochemistry. 53(46), pp. 7259-7268. ISSN 0006-2960. eISSN 1520-4995

@article{Perovic2014Oligo-30195, title={An Oligomeric C-RING Nacre Protein Influences Prenucleation Events and Organizes Mineral Nanoparticles}, year={2014}, doi={10.1021/bi5008854}, number={46}, volume={53}, issn={0006-2960}, journal={Biochemistry}, pages={7259--7268}, author={Perovic, Iva and Verch, Andreas and Chang, Eric P. and Rao, Ashit and Cölfen, Helmut and Kröger, Roland and Spencer-Evans, John} }

Rao, Ashit Kröger, Roland Spencer-Evans, John An Oligomeric C-RING Nacre Protein Influences Prenucleation Events and Organizes Mineral Nanoparticles Perovic, Iva 2015-03-11T10:44:43Z Chang, Eric P. Cölfen, Helmut The mollusk shell nacre layer integrates mineral phases with macromolecular components such as intracrystalline proteins. However, the roles performed by intracrystalline proteins in calcium carbonate nucleation and subsequent postnucleation events (e.g., organization of mineral deposits) in the nacre layer are not known. We find that AP7, a nacre intracrystalline C-RING protein, self-assembles to form amorphous protein oligomers and films on mica that further assemble into larger aggregates or phases in the presence of Ca<sup>2+</sup>. Using solution nuclear magnetic resonance spectroscopy, we determine that the protein assemblies are stabilized by interdomain interactions involving the aggregation-prone T31–N66 C-terminal C-RING domain but are destabilized by the labile nature of the intrinsically disordered D1–T19 AA N-terminal sequence. Thus, the dynamic, amorphous nature of the AP7 assemblies can be traced to the molecular behavior of the N-terminal sequence. Using potentiometric methods, we observe that AP7 protein phases prolong the time interval for prenucleation cluster formation but neither stabilize nor destabilize ACC clusters. Time-resolved flow cell scanning transmission electron microscopy mineralization studies confirm that AP7 protein phases delay the onset of nucleation and assemble and organize mineral nanoparticles into ring-shaped branching clusters in solution. These phenomena are not observed in protein-deficient assays. We conclude that C-RING AP7 protein phases modulate the time period for early events in nucleation and form strategic associations with forming mineral nanoparticles that lead to mineral organization. 2015-03-11T10:44:43Z Kröger, Roland 2014 Perovic, Iva eng Chang, Eric P. Rao, Ashit Verch, Andreas Verch, Andreas Cölfen, Helmut Spencer-Evans, John

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto