Type of Publication: | Journal article |
Author: | Lambert, Ben |
Year of publication: | 2014 |
Published in: | Transactions of the American Mathematical Society ; 366 (2014). - pp. 3373-3388. - ISSN 0002-9947. - eISSN 1088-6850 |
DOI (citable link): | https://dx.doi.org/10.1090/S0002-9947-2014-05865-0 |
Summary: |
This paper demonstrates existence for all time of mean curvature flow in Minkowski space with a perpendicular Neumann boundary condition, where the boundary manifold is a convex cone and the flowing manifold is initially spacelike. Using a blowdown argument, we show that under renormalisation this flow converges towards a homothetically expanding hyperbolic solution.
|
Subject (DDC): | 510 Mathematics |
Bibliography of Konstanz: | Yes |
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |
LAMBERT, Ben, 2014. The perpendicular Neumann problem for mean curvature flow with a timelike cone boundary condition. In: Transactions of the American Mathematical Society. 366, pp. 3373-3388. ISSN 0002-9947. eISSN 1088-6850. Available under: doi: 10.1090/S0002-9947-2014-05865-0
@article{Lambert2014perpe-30126, title={The perpendicular Neumann problem for mean curvature flow with a timelike cone boundary condition}, year={2014}, doi={10.1090/S0002-9947-2014-05865-0}, volume={366}, issn={0002-9947}, journal={Transactions of the American Mathematical Society}, pages={3373--3388}, author={Lambert, Ben} }
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/30126"> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30126"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-02-27T17:43:13Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/52"/> <dcterms:title>The perpendicular Neumann problem for mean curvature flow with a timelike cone boundary condition</dcterms:title> <dc:contributor>Lambert, Ben</dc:contributor> <dc:creator>Lambert, Ben</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-02-27T17:43:13Z</dcterms:available> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dcterms:issued>2014</dcterms:issued> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">This paper demonstrates existence for all time of mean curvature flow in Minkowski space with a perpendicular Neumann boundary condition, where the boundary manifold is a convex cone and the flowing manifold is initially spacelike. Using a blowdown argument, we show that under renormalisation this flow converges towards a homothetically expanding hyperbolic solution.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/52"/> </rdf:Description> </rdf:RDF>