KOPS - Das Institutionelle Repositorium der Universität Konstanz

NStreamAware : Real-Time visual analytics for data streams (VAST Challenge 2014 MC3)

NStreamAware : Real-Time visual analytics for data streams (VAST Challenge 2014 MC3)

Zitieren

Dateien zu dieser Ressource

Dateien Größe Format Anzeige

Zu diesem Dokument gibt es keine Dateien.

FISCHER, Fabian, 2014. NStreamAware : Real-Time visual analytics for data streams (VAST Challenge 2014 MC3). IEEE Conference on Visual Analytics Science and Technology (VAST), 2014. Paris, 9. Okt 2014 - 14. Okt 2014. In: MIN CHEN ..., , ed.. 2014 IEEE Conference on Visual Analytics Science and Technology (VAST) : Proceedings ; Paris, France, 9-14 October 2014. IEEE Conference on Visual Analytics Science and Technology (VAST), 2014. Paris, 9. Okt 2014 - 14. Okt 2014. Piscataway, NJ:IEEE, pp. 373-374. ISBN 978-1-4799-6227-3

@inproceedings{Fischer2014NStre-30122, title={NStreamAware : Real-Time visual analytics for data streams (VAST Challenge 2014 MC3)}, year={2014}, doi={10.1109/VAST.2014.7042572}, isbn={978-1-4799-6227-3}, address={Piscataway, NJ}, publisher={IEEE}, booktitle={2014 IEEE Conference on Visual Analytics Science and Technology (VAST) : Proceedings ; Paris, France, 9-14 October 2014}, pages={373--374}, editor={Min Chen ...}, author={Fischer, Fabian} }

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/30122"> <dcterms:issued>2014</dcterms:issued> <dcterms:title>NStreamAware : Real-Time visual analytics for data streams (VAST Challenge 2014 MC3)</dcterms:title> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">To solve the VAST Challenge 2014 MC3 we use NStreamAware, which is our real-time visual analytics system to analyze data streams. We make use of various modern technologies like Apache Spark and others to provide high scalability and incorporate new technologies and show their use within visual analytics applications. Furthermore, we developed a web application, called NVisAware, to analyze and visualize data streams to help the analyst to focus on the most important time segments. We extracted socalled sliding slices, which are aggregated summaries calculated on a sliding window and represent them in a small-multiple like visualization containing various small visualizations (e.g., word clouds) to present an overview of the current time segment. We show how these techniques can be used to successfully solve the given tasks.</dcterms:abstract> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30122"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-02-27T14:05:37Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-02-27T14:05:37Z</dc:date> <dc:creator>Fischer, Fabian</dc:creator> <dc:contributor>Fischer, Fabian</dc:contributor> </rdf:Description> </rdf:RDF>

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto