Cylindrical estimates for hypersurfaces moving by convex curvature functions

Zitieren

Dateien zu dieser Ressource

Dateien Größe Format Anzeige

Zu diesem Dokument gibt es keine Dateien.

ANDREWS, Ben, Mat LANGFORD, 2014. Cylindrical estimates for hypersurfaces moving by convex curvature functions. In: Analysis & PDE. 7(5), pp. 1091-1107. ISSN 2157-5045. eISSN 1948-206X

@article{Andrews2014Cylin-30117, title={Cylindrical estimates for hypersurfaces moving by convex curvature functions}, year={2014}, doi={10.2140/apde.2014.7.1091}, number={5}, volume={7}, issn={2157-5045}, journal={Analysis & PDE}, pages={1091--1107}, author={Andrews, Ben and Langford, Mat} }

eng We prove a complete family of cylindrical estimates for solutions of a class of fully nonlinear curvature flows, generalising the cylindrical estimate of Huisken and Sinestrari [Invent. Math. 175:1 (2009), 1–14, §5] for the mean curvature flow. More precisely, we show, for the class of flows considered, that, at points where the curvature is becoming large, an (m+1)-convex (0≤m≤n−2) solution either becomes strictly m-convex or its Weingarten map becomes that of a cylinder R<sup>m</sup>×S<sup>n−m</sup>. This result complements the convexity estimate we proved with McCoy [Anal. PDE 7:2 (2014), 407–433] for the same class of flows. 2015-02-27T13:15:40Z Cylindrical estimates for hypersurfaces moving by convex curvature functions Andrews, Ben Andrews, Ben Langford, Mat 2014 Langford, Mat 2015-02-27T13:15:40Z

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto