Optimization strategy for parameter sampling in the reduced basis method
Optimization strategy for parameter sampling in the reduced basis method
Date
2015
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Preprint
Publication status
Published in
Abstract
The reduced basis (RB) method is an efficient technique to solve parametric partial differential equations in a multi-query context, where the solution has to be computed for many different parameter values. The RB method drastically reduces the computational time for any additional solution (during the so-called online stage) once an initial set of basis functions has been computed (during the so-called offline stage) still retaining a certified level of accuracy. The greedy algorithm is the classical sampling strategy to select parameter values that define the set of basis functions. Here, an alternative and competitive approach for choosing the parameter values is presented. The new approach is based on an optimization problem for the parameters that allows to reduce the computational complexity of the offline stage of the RB method and improve its effectiveness.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
IAPICHINO, Laura, Stefan VOLKWEIN, 2015. Optimization strategy for parameter sampling in the reduced basis methodBibTex
@unpublished{Iapichino2015Optim-30107, year={2015}, title={Optimization strategy for parameter sampling in the reduced basis method}, author={Iapichino, Laura and Volkwein, Stefan}, note={Konferenzbeitrag zu: MATHMOD 2015, 8th Vienna Conference on Mathematical Modeling, February 18-20, 2015} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30107"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-02-27T10:43:05Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:rights>terms-of-use</dc:rights> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30107"/> <dc:contributor>Volkwein, Stefan</dc:contributor> <dcterms:title>Optimization strategy for parameter sampling in the reduced basis method</dcterms:title> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-02-27T10:43:05Z</dc:date> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/30107/3/Iapichino_0-253935.pdf"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:abstract xml:lang="eng">The reduced basis (RB) method is an efficient technique to solve parametric partial differential equations in a multi-query context, where the solution has to be computed for many different parameter values. The RB method drastically reduces the computational time for any additional solution (during the so-called online stage) once an initial set of basis functions has been computed (during the so-called offline stage) still retaining a certified level of accuracy. The greedy algorithm is the classical sampling strategy to select parameter values that define the set of basis functions. Here, an alternative and competitive approach for choosing the parameter values is presented. The new approach is based on an optimization problem for the parameters that allows to reduce the computational complexity of the offline stage of the RB method and improve its effectiveness.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Iapichino, Laura</dc:creator> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Iapichino, Laura</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Volkwein, Stefan</dc:creator> <dcterms:issued>2015</dcterms:issued> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/30107/3/Iapichino_0-253935.pdf"/> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Konferenzbeitrag zu: MATHMOD 2015, 8th Vienna Conference on Mathematical Modeling, February 18-20, 2015
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes