Selecting good views of high-dimensional data using class consistency


Dateien zu dieser Ressource

Dateien Größe Format Anzeige

Zu diesem Dokument gibt es keine Dateien.

SIPS, Mike, Boris NEUBERT, John P. LEWIS, Pat HANRAHAN, 2009. Selecting good views of high-dimensional data using class consistency. EuroVis, 2009. In: Computer Graphics Forum. 28(3), pp. 831-838. ISSN 0167-7055. eISSN 1467-8659. Available under: doi: 10.1111/j.1467-8659.2009.01467.x

@article{Sips2009-06Selec-3004, title={Selecting good views of high-dimensional data using class consistency}, year={2009}, doi={10.1111/j.1467-8659.2009.01467.x}, number={3}, volume={28}, issn={0167-7055}, journal={Computer Graphics Forum}, pages={831--838}, author={Sips, Mike and Neubert, Boris and Lewis, John P. and Hanrahan, Pat} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <dc:contributor>Lewis, John P.</dc:contributor> <dc:creator>Neubert, Boris</dc:creator> <dcterms:isPartOf rdf:resource=""/> <dcterms:bibliographicCitation>Publ. in: Computer graphics forum, 28 (2009), 3, pp. 831-838 (EuroVis 09)</dcterms:bibliographicCitation> <dc:creator>Hanrahan, Pat</dc:creator> <dc:rights>terms-of-use</dc:rights> <dcterms:title>Selecting good views of high-dimensional data using class consistency</dcterms:title> <dc:date rdf:datatype="">2011-03-23T10:15:44Z</dc:date> <dcterms:available rdf:datatype="">2011-03-23T10:15:44Z</dcterms:available> <dcterms:issued>2009-06</dcterms:issued> <dcterms:rights rdf:resource=""/> <bibo:uri rdf:resource=""/> <dc:contributor>Neubert, Boris</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Hanrahan, Pat</dc:contributor> <dspace:isPartOfCollection rdf:resource=""/> <dc:creator>Sips, Mike</dc:creator> <dcterms:abstract xml:lang="eng">Many visualization techniques involve mapping high-dimensional data spaces to lower-dimensional views. Unfortunately, mapping a high-dimensional data space into a scatterplot involves a loss of information; or, even worse, it can give a misleading picture of valuable structure in higher dimensions. In this paper, we propose class consistency as a measure of the quality of the mapping. Class consistency enforces the constraint that classes of n D data are shown clearly in 2 D scatterplots. We propose two quantitative measures of class consistency, one based on the distance to the class s center of gravity, and another based on the entropies of the spatial distributions of classes. We performed an experiment where users choose good views, and show that class consistency has good precision and recall. We also evaluate both consistency measures over a range of data sets and show that these measures are efficient and robust.</dcterms:abstract> <dc:creator>Lewis, John P.</dc:creator> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:contributor>Sips, Mike</dc:contributor> </rdf:Description> </rdf:RDF>

Das Dokument erscheint in:

KOPS Suche


Mein Benutzerkonto