Multi-label classification and extracting predicted class hierarchies

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

BRUCKER, Florian, Fernando BENITES DE AZEVEDO E SOUZA, Elena SAPOZHNIKOVA, 2011. Multi-label classification and extracting predicted class hierarchies. In: Pattern Recognition. 44(3), pp. 724-738. ISSN 0031-3203. Available under: doi: 10.1016/j.patcog.2010.09.010

@article{Brucker2011Multi-2997, title={Multi-label classification and extracting predicted class hierarchies}, year={2011}, doi={10.1016/j.patcog.2010.09.010}, number={3}, volume={44}, issn={0031-3203}, journal={Pattern Recognition}, pages={724--738}, author={Brucker, Florian and Benites de Azevedo e Souza, Fernando and Sapozhnikova, Elena} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <dcterms:bibliographicCitation>Publ. in: Pattern Recognition 44 (2011), 3, pp. 724-738</dcterms:bibliographicCitation> <dc:contributor>Benites de Azevedo e Souza, Fernando</dc:contributor> <dcterms:title>Multi-label classification and extracting predicted class hierarchies</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:rights>terms-of-use</dc:rights> <dc:creator>Brucker, Florian</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dspace:isPartOfCollection rdf:resource=""/> <dcterms:isPartOf rdf:resource=""/> <dcterms:issued>2011</dcterms:issued> <dc:contributor>Sapozhnikova, Elena</dc:contributor> <dcterms:rights rdf:resource=""/> <dc:language>eng</dc:language> <dc:creator>Benites de Azevedo e Souza, Fernando</dc:creator> <dcterms:abstract xml:lang="eng">This paper investigates hierarchy extraction from results of multi-label classification (MC). MC deals with instances labeled by multiple classes rather than just one, and the classes are often hierarchically organized. Usually multi-label classifiers rely on a predefined class hierarchy. A much less investigated approach is to suppose that the hierarchy is unknown and to infer it automatically. In this setting, the proposed system classifies multi-label data and extracts a class hierarchy from multi-label predictions. It is based on a combination of a novel multi-label extension of the fuzzy Adaptive Resonance Associative Map (ARAM) neural network with an association rule learner.</dcterms:abstract> <dcterms:available rdf:datatype="">2011-03-23T10:15:41Z</dcterms:available> <dc:contributor>Brucker, Florian</dc:contributor> <bibo:uri rdf:resource=""/> <dc:date rdf:datatype="">2011-03-23T10:15:41Z</dc:date> <dc:creator>Sapozhnikova, Elena</dc:creator> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


My Account