Efficacy of Phosphorus Gettering and Hydrogenation in Multicrystalline Silicon

Zitieren

Dateien zu dieser Ressource

Prüfsumme: MD5:1804ea24394090ccef69863eeb5a4ff6

GINDNER, Sarah, Philipp KARZEL, Bernhard HERZOG, Giso HAHN, 2014. Efficacy of Phosphorus Gettering and Hydrogenation in Multicrystalline Silicon. In: IEEE Journal of Photovoltaics. 4(4), pp. 1063-1070. eISSN 2156-3381

@article{Gindner2014Effic-29820, title={Efficacy of Phosphorus Gettering and Hydrogenation in Multicrystalline Silicon}, year={2014}, doi={10.1109/JPHOTOV.2014.2322276}, number={4}, volume={4}, journal={IEEE Journal of Photovoltaics}, pages={1063--1070}, author={Gindner, Sarah and Karzel, Philipp and Herzog, Bernhard and Hahn, Giso} }

Hahn, Giso Herzog, Bernhard eng 2015-02-11T08:23:42Z 2015-02-11T08:23:42Z Hahn, Giso The emitter formation step (POCl3 diffusion) in p-type crystalline silicon solar cell processing includes many variables, e.g., peak temperature, gas flows, temperature ramps, which can be optimized in order to improve material quality. Diffusion parameters of an 80-Ω/L1 emitter are varied, and the resulting change in electronic quality of multicrystalline silicon is analyzed. A detailed gettering analysis of multicrystalline material, surface passivated with hydrogen-rich amorphous silicon, after POCl<sub>3</sub> diffusion, and an additional gettering step combined with hydrogenation from SiN<sub>x</sub>:H is presented. The industrial-type diffusion leads to material of lower electronic quality than the extended reference diffusion. A major finding of this paper is the fact that results on different 5 × 5 cm<sup>2</sup> samples out of one 15.6 × 15.6 cm<sup>2</sup> wafer can vary significantly. Hence, conclusions about which diffusion is most efficient in gettering strongly depend on wafer position. An edge position close to crucible walls, for example, might improve less effectively than another position close to the crucible center. In fact, the opposite can also be shown, and samples originating from edge regions reach their highest lifetimes after gettering. This is explained by the different defect structure of the investigated samples. Structures exhibiting high gettering efficacy contain fewer recombination active grain boundaries and are predominantly free of extended defect clusters. 2014 Karzel, Philipp Karzel, Philipp Gindner, Sarah Herzog, Bernhard Efficacy of Phosphorus Gettering and Hydrogenation in Multicrystalline Silicon Gindner, Sarah

Dateiabrufe seit 11.02.2015 (Informationen über die Zugriffsstatistik)

Gindner_0-261793.pdf 126

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto