Particle physics in a superconductor
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The recent discovery of the Higgs boson has created a lot of excitement among scientists. Celebrated as one of the most fundamental results in experimental physics (1), the observation of this particle confirms the existence of the associated Higgs field that plays a pivotal role in the Standard Model of particle physics. Because of the Higgs boson's large mass (about 125 GeV), it could be detected only in the world's largest and most powerful accelerator—the Large Hadron Collider at CERN, Geneva. Although it sounds strange, the theoretical proposal of the Higgs mechanism was actually inspired by ideas from condensed matter physics, which typically works at much lower energies (a few electron volts or less). In 1958, Anderson discussed the appearance of a coherent excited state in superconducting condensates with spontaneously broken symmetry (2). Later, this approach was advanced by Nambu (3). The existence of superconducting condensates has been firmly established. In contrast, unambiguous experimental evidence for the coherent excited state (called the Higgs mode) had been missing. On page 1145 of this issue, Matsunaga et al. (4) report direct observation of the Higgs mode in the conventional superconductor niobium nitride (NbN) excited by intense electric field transients.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
PASHKIN, Alexej, Alfred LEITENSTORFER, 2014. Particle physics in a superconductor. In: Science. 2014, 345(6201), pp. 1121-1122. ISSN 0036-8075. eISSN 1095-9203. Available under: doi: 10.1126/science.1257302BibTex
@article{Pashkin2014Parti-29326, year={2014}, doi={10.1126/science.1257302}, title={Particle physics in a superconductor}, number={6201}, volume={345}, issn={0036-8075}, journal={Science}, pages={1121--1122}, author={Pashkin, Alexej and Leitenstorfer, Alfred} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29326"> <dcterms:title>Particle physics in a superconductor</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/29326/1/Leitenstorfer_0-258811.pdf"/> <dcterms:abstract xml:lang="eng">The recent discovery of the Higgs boson has created a lot of excitement among scientists. Celebrated as one of the most fundamental results in experimental physics (1), the observation of this particle confirms the existence of the associated Higgs field that plays a pivotal role in the Standard Model of particle physics. Because of the Higgs boson's large mass (about 125 GeV), it could be detected only in the world's largest and most powerful accelerator—the Large Hadron Collider at CERN, Geneva. Although it sounds strange, the theoretical proposal of the Higgs mechanism was actually inspired by ideas from condensed matter physics, which typically works at much lower energies (a few electron volts or less). In 1958, Anderson discussed the appearance of a coherent excited state in superconducting condensates with spontaneously broken symmetry (2). Later, this approach was advanced by Nambu (3). The existence of superconducting condensates has been firmly established. In contrast, unambiguous experimental evidence for the coherent excited state (called the Higgs mode) had been missing. On page 1145 of this issue, Matsunaga et al. (4) report direct observation of the Higgs mode in the conventional superconductor niobium nitride (NbN) excited by intense electric field transients.</dcterms:abstract> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-11-27T09:44:47Z</dc:date> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-11-27T09:44:47Z</dcterms:available> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/29326/1/Leitenstorfer_0-258811.pdf"/> <dcterms:issued>2014</dcterms:issued> <dc:contributor>Leitenstorfer, Alfred</dc:contributor> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/29326"/> <dc:creator>Leitenstorfer, Alfred</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Pashkin, Alexej</dc:creator> <dc:language>eng</dc:language> <dc:contributor>Pashkin, Alexej</dc:contributor> <dc:rights>terms-of-use</dc:rights> </rdf:Description> </rdf:RDF>