Split embedding problems over the open arithmetic disc

Zitieren

Dateien zu dieser Ressource

Dateien Größe Format Anzeige

Zu diesem Dokument gibt es keine Dateien.

FEHM, Arno, Elan PARAN, 2014. Split embedding problems over the open arithmetic disc. In: Transactions of the American Mathematical Society. 366(7), pp. 3535-3551. ISSN 0002-9947. eISSN 1088-6850

@article{Fehm2014Split-29283, title={Split embedding problems over the open arithmetic disc}, year={2014}, doi={10.1090/S0002-9947-2014-05931-X}, number={7}, volume={366}, issn={0002-9947}, journal={Transactions of the American Mathematical Society}, pages={3535--3551}, author={Fehm, Arno and Paran, Elan} }

Split embedding problems over the open arithmetic disc Let Z{t} be the ring of arithmetic power series that converge on the complex open unit disc. A classical result of Harbater asserts that every finite group occurs as a Galois group over the quotient field of Z{t}. We strengthen this by showing that every finite split embedding problem over Q acquires a solution over this field. More generally, we solve all t-unramified finite split embedding problems over the quotient field of O<sub>K</sub>{t}, where O<sub>K</sub> is the ring of integers of an arbitrary number field K. Paran, Elan Fehm, Arno 2014-11-24T16:04:27Z eng 2014-11-24T16:04:27Z Fehm, Arno 2014 Paran, Elan

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto