Type of Publication: | Journal article |
URI (citable link): | http://nbn-resolving.de/urn:nbn:de:bsz:352-0-253295 |
Author: | Oelke, Daniela; Strobelt, Hendrik; Rohrdantz, Christian; Gurevych, Iryna; Deussen, Oliver |
Year of publication: | 2014 |
Published in: | Computer Graphics Forum ; 33 (2014), 3. - pp. 201-210. - ISSN 0167-7055. - eISSN 1467-8659 |
DOI (citable link): | https://dx.doi.org/10.1111/cgf.12376 |
Summary: |
We present an analysis and visualization method for computing what distinguishes a given document collection from others. We determine topics that discriminate a subset of collections from the remaining ones by applying probabilistic topic modeling and subsequently approximating the two relevant criteria distinctiveness and characteristicness algorithmically through a set of heuristics. Furthermore, we suggest a novel visualization method called DiTop-View, in which topics are represented by glyphs (topic coins) that are arranged on a 2D plane. Topic coins are designed to encode all information necessary for performing comparative analyses such as the class membership of a topic, its most probable terms and the discriminative relations. We evaluate our topic analysis using statistical measures and a small user experiment and present an expert case study with researchers from political sciences analyzing two real-world datasets.
|
Subject (DDC): | 004 Computer Science |
Link to License: | In Copyright |
Bibliography of Konstanz: | Yes |
OELKE, Daniela, Hendrik STROBELT, Christian ROHRDANTZ, Iryna GUREVYCH, Oliver DEUSSEN, 2014. Comparative Exploration of Document Collections : a Visual Analytics Approach. In: Computer Graphics Forum. 33(3), pp. 201-210. ISSN 0167-7055. eISSN 1467-8659. Available under: doi: 10.1111/cgf.12376
@article{Oelke2014Compa-29163, title={Comparative Exploration of Document Collections : a Visual Analytics Approach}, year={2014}, doi={10.1111/cgf.12376}, number={3}, volume={33}, issn={0167-7055}, journal={Computer Graphics Forum}, pages={201--210}, author={Oelke, Daniela and Strobelt, Hendrik and Rohrdantz, Christian and Gurevych, Iryna and Deussen, Oliver} }
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/29163"> <dc:creator>Rohrdantz, Christian</dc:creator> <dc:creator>Deussen, Oliver</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/29163/3/Oelke_0-253295.pdf"/> <dc:contributor>Strobelt, Hendrik</dc:contributor> <dc:creator>Gurevych, Iryna</dc:creator> <dc:contributor>Rohrdantz, Christian</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/29163/3/Oelke_0-253295.pdf"/> <dc:contributor>Oelke, Daniela</dc:contributor> <dc:creator>Strobelt, Hendrik</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-10-22T09:57:37Z</dc:date> <dcterms:issued>2014</dcterms:issued> <dc:rights>terms-of-use</dc:rights> <dc:creator>Oelke, Daniela</dc:creator> <dcterms:title>Comparative Exploration of Document Collections : a Visual Analytics Approach</dcterms:title> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-10-22T09:57:37Z</dcterms:available> <dcterms:abstract xml:lang="eng">We present an analysis and visualization method for computing what distinguishes a given document collection from others. We determine topics that discriminate a subset of collections from the remaining ones by applying probabilistic topic modeling and subsequently approximating the two relevant criteria distinctiveness and characteristicness algorithmically through a set of heuristics. Furthermore, we suggest a novel visualization method called DiTop-View, in which topics are represented by glyphs (topic coins) that are arranged on a 2D plane. Topic coins are designed to encode all information necessary for performing comparative analyses such as the class membership of a topic, its most probable terms and the discriminative relations. We evaluate our topic analysis using statistical measures and a small user experiment and present an expert case study with researchers from political sciences analyzing two real-world datasets.</dcterms:abstract> <dc:contributor>Gurevych, Iryna</dc:contributor> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/29163"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:bibliographicCitation>Computer Graphics Forum, 33 (2014), 3. - S.</dcterms:bibliographicCitation> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:contributor>Deussen, Oliver</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>
Oelke_0-253295.pdf | 861 |