Type of Publication: | Journal article |
Author: | Sellent, Anita; Eisemann, Martin; Goldlücke, Bastian; Cremers, Daniel |
Year of publication: | 2011 |
Published in: | IEEE Transactions on Pattern Analysis and Machine Intelligence ; 33 (2011), 8. - pp. 1577-1589. - ISSN 0162-8828. - eISSN 1939-3539 |
DOI (citable link): | https://dx.doi.org/10.1109/TPAMI.2010.218 |
Summary: |
Traditional optical flow algorithms rely on consecutive short-exposed images. In this work, we make use of an additional long-exposed image for motion field estimation. Long-exposed images integrate motion information directly in the form of motion-blur. With this additional information, more robust and accurate motion fields can be estimated. In addition, the moment of occlusion can be determined. Considering the basic signal-theoretical problem in motion field estimation, we exploit the fact that long-exposed images integrate motion information to prevent temporal aliasing. A suitable image formation model relates the long-exposed image to preceding and succeeding short-exposed images in terms of dense 2D motion and per-pixel occlusion/disocclusion timings. Based on our image formation model, we describe a practical variational algorithm to estimate the motion field not only for visible image regions but also for regions getting occluded. Results for synthetic as well as real-world scenes demonstrate the validity of the approach.
|
Subject (DDC): | 004 Computer Science |
Keywords: | computer graphics, image sequences, motion estimation |
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |
SELLENT, Anita, Martin EISEMANN, Bastian GOLDLÜCKE, Daniel CREMERS, 2011. Motion Field Estimation from Alternate Exposure Images. In: IEEE Transactions on Pattern Analysis and Machine Intelligence. 33(8), pp. 1577-1589. ISSN 0162-8828. eISSN 1939-3539. Available under: doi: 10.1109/TPAMI.2010.218
@article{Sellent2011Motio-29097, title={Motion Field Estimation from Alternate Exposure Images}, year={2011}, doi={10.1109/TPAMI.2010.218}, number={8}, volume={33}, issn={0162-8828}, journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, pages={1577--1589}, author={Sellent, Anita and Eisemann, Martin and Goldlücke, Bastian and Cremers, Daniel} }
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/29097"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:creator>Eisemann, Martin</dc:creator> <dc:creator>Goldlücke, Bastian</dc:creator> <dc:creator>Sellent, Anita</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:creator>Cremers, Daniel</dc:creator> <dc:contributor>Goldlücke, Bastian</dc:contributor> <dcterms:abstract xml:lang="eng">Traditional optical flow algorithms rely on consecutive short-exposed images. In this work, we make use of an additional long-exposed image for motion field estimation. Long-exposed images integrate motion information directly in the form of motion-blur. With this additional information, more robust and accurate motion fields can be estimated. In addition, the moment of occlusion can be determined. Considering the basic signal-theoretical problem in motion field estimation, we exploit the fact that long-exposed images integrate motion information to prevent temporal aliasing. A suitable image formation model relates the long-exposed image to preceding and succeeding short-exposed images in terms of dense 2D motion and per-pixel occlusion/disocclusion timings. Based on our image formation model, we describe a practical variational algorithm to estimate the motion field not only for visible image regions but also for regions getting occluded. Results for synthetic as well as real-world scenes demonstrate the validity of the approach.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-10-08T09:59:35Z</dc:date> <dcterms:issued>2011</dcterms:issued> <dcterms:title>Motion Field Estimation from Alternate Exposure Images</dcterms:title> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/29097"/> <dc:contributor>Eisemann, Martin</dc:contributor> <dc:contributor>Sellent, Anita</dc:contributor> <dc:contributor>Cremers, Daniel</dc:contributor> <dc:language>eng</dc:language> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-10-08T09:59:35Z</dcterms:available> </rdf:Description> </rdf:RDF>