Introducing Total Curvature for Image Processing

Zitieren

Dateien zu dieser Ressource

Dateien Größe Format Anzeige

Zu diesem Dokument gibt es keine Dateien.

GOLDLÜCKE, Bastian, Daniel CREMERS, 2011. Introducing Total Curvature for Image Processing. IEE International Conference on Computer Vision. Barcelona, 6. Nov 2011 - 13. Nov 2011. In: IEEE International Conference on Computer Vision (ICCV), 2011 : 6 - 13 Nov. 2011, Barcelona, Spain. IEE International Conference on Computer Vision. Barcelona, 6. Nov 2011 - 13. Nov 2011. Piscataway:IEEE, pp. 1267-1274. ISBN 978-1-4577-1101-5

@inproceedings{Goldlucke2011Intro-29092, title={Introducing Total Curvature for Image Processing}, year={2011}, doi={10.1109/ICCV.2011.6126378}, isbn={978-1-4577-1101-5}, address={Piscataway}, publisher={IEEE}, booktitle={IEEE International Conference on Computer Vision (ICCV), 2011 : 6 - 13 Nov. 2011, Barcelona, Spain}, pages={1267--1274}, author={Goldlücke, Bastian and Cremers, Daniel} }

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/29092"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-10-08T09:16:35Z</dc:date> <dc:creator>Goldlücke, Bastian</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/29092"/> <dc:contributor>Goldlücke, Bastian</dc:contributor> <dcterms:title>Introducing Total Curvature for Image Processing</dcterms:title> <dc:creator>Cremers, Daniel</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-10-08T09:16:35Z</dcterms:available> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">We introduce the novel continuous regularizer total curvature (TC) for images u: Ω → ℝ. It is defined as the Menger-Melnikov curvature of the Radon measure |Du|, which can be understood as a measure theoretic formulation of curvature mathematically related to mean curvature. The functional is not convex, therefore we define a convex relaxation which yields a close approximation. Similar to the total variation, the relaxation can be written as the support functional of a convex set, which means that there are stable and efficient minimization algorithms available when it is used as a regularizer in image processing problems. Our current implementation can handle general inverse problems, inpainting and segmentation. We demonstrate in experiments and comparisons how the regularizer performs in practice.</dcterms:abstract> <dcterms:issued>2011</dcterms:issued> <dc:contributor>Cremers, Daniel</dc:contributor> </rdf:Description> </rdf:RDF>

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto