Introducing Total Curvature for Image Processing

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

GOLDLÜCKE, Bastian, Daniel CREMERS, 2011. Introducing Total Curvature for Image Processing. IEE International Conference on Computer Vision. Barcelona, Nov 6, 2011 - Nov 13, 2011. In: IEEE International Conference on Computer Vision (ICCV), 2011 : 6 - 13 Nov. 2011, Barcelona, Spain. Piscataway:IEEE, pp. 1267-1274. ISBN 978-1-4577-1101-5. Available under: doi: 10.1109/ICCV.2011.6126378

@inproceedings{Goldlucke2011Intro-29092, title={Introducing Total Curvature for Image Processing}, year={2011}, doi={10.1109/ICCV.2011.6126378}, isbn={978-1-4577-1101-5}, address={Piscataway}, publisher={IEEE}, booktitle={IEEE International Conference on Computer Vision (ICCV), 2011 : 6 - 13 Nov. 2011, Barcelona, Spain}, pages={1267--1274}, author={Goldlücke, Bastian and Cremers, Daniel} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <dc:date rdf:datatype="">2014-10-08T09:16:35Z</dc:date> <dc:creator>Goldlücke, Bastian</dc:creator> <bibo:uri rdf:resource=""/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Goldlücke, Bastian</dc:contributor> <dcterms:title>Introducing Total Curvature for Image Processing</dcterms:title> <dcterms:isPartOf rdf:resource=""/> <dc:creator>Cremers, Daniel</dc:creator> <dcterms:available rdf:datatype="">2014-10-08T09:16:35Z</dcterms:available> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:abstract xml:lang="eng">We introduce the novel continuous regularizer total curvature (TC) for images u: Ω → ℝ. It is defined as the Menger-Melnikov curvature of the Radon measure |Du|, which can be understood as a measure theoretic formulation of curvature mathematically related to mean curvature. The functional is not convex, therefore we define a convex relaxation which yields a close approximation. Similar to the total variation, the relaxation can be written as the support functional of a convex set, which means that there are stable and efficient minimization algorithms available when it is used as a regularizer in image processing problems. Our current implementation can handle general inverse problems, inpainting and segmentation. We demonstrate in experiments and comparisons how the regularizer performs in practice.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource=""/> <dc:contributor>Cremers, Daniel</dc:contributor> <dcterms:issued>2011</dcterms:issued> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


My Account