A structurally damped plate equation with Dirichlet-Neumann boundary conditions

Thumbnail Image
Date
2014
Authors
Schnaubelt, Roland
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
Konstanzer Schriften in Mathematik; 330
URI (citable link)
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Working Paper/Technical Report
Publication status
Published in
Abstract
We investigate sectoriality and maximal regularity in Lp-Lq-Sobolev spaces for the structurally damped plate equation with Dirichlet-Neumann (clamped) boundary conditions. We obtain unique solutions with optimal regularity for the inhomogeneous problem in the whole space, in the half-space, and in bounded domains of class C4.



It turns out that the first-order system related to the scalar equation on Rn is sectorial only after a shift in the operator. On the half-space one has to include zero boundary conditions in the underlying function space in order to obtain sectoriality of the shifted operator and maximal regularity for the case of homogeneous boundary conditions. We further show that the semigroup solving the problem on bounded domains is exponentially stable.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Structurally damped plate equation, clamped boundary condition, R-sectoriality
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690DENK, Robert, Roland SCHNAUBELT, 2014. A structurally damped plate equation with Dirichlet-Neumann boundary conditions
BibTex
@techreport{Denk2014struc-29060,
  year={2014},
  series={Konstanzer Schriften in Mathematik},
  title={A structurally damped plate equation with Dirichlet-Neumann boundary conditions},
  number={330},
  author={Denk, Robert and Schnaubelt, Roland}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29060">
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Denk, Robert</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/29060/3/Denk_0-253353.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-10-02T08:24:53Z</dcterms:available>
    <dc:creator>Schnaubelt, Roland</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/29060/3/Denk_0-253353.pdf"/>
    <dc:contributor>Schnaubelt, Roland</dc:contributor>
    <dcterms:issued>2014</dcterms:issued>
    <dc:contributor>Denk, Robert</dc:contributor>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/29060"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:title>A structurally damped plate equation with Dirichlet-Neumann boundary conditions</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-10-02T08:24:53Z</dc:date>
    <dcterms:abstract xml:lang="eng">We investigate sectoriality and maximal regularity in L&lt;sup&gt;p&lt;/sup&gt;-L&lt;sup&gt;q&lt;/sup&gt;-Sobolev spaces for the structurally damped plate equation  with Dirichlet-Neumann (clamped) boundary conditions. We obtain unique solutions with optimal regularity for the inhomogeneous problem in the whole space, in the half-space, and in  bounded  domains of class C&lt;sup&gt;4&lt;/sup&gt;.&lt;br /&gt;&lt;br /&gt;&lt;br /&gt;&lt;br /&gt;It turns out that the first-order system related to the scalar equation on R&lt;sup&gt;n&lt;/sup&gt; is sectorial only after a shift in the operator. On the half-space one has to include zero boundary conditions in the underlying function space in order to obtain sectoriality of the shifted operator and maximal regularity for the case of homogeneous boundary conditions. We further show that the semigroup solving the problem on bounded domains is exponentially stable.</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed