KOPS - Das Institutionelle Repositorium der Universität Konstanz

Estimating GARCH-type models with symmetric stable innovations : indirect inference versus maximum likelihood

Estimating GARCH-type models with symmetric stable innovations : indirect inference versus maximum likelihood

Zitieren

Dateien zu dieser Ressource

Dateien Größe Format Anzeige

Zu diesem Dokument gibt es keine Dateien.

CALZOLARI, Giorgio, Roxana HALBLEIB, Alessandro PARRINI, 2014. Estimating GARCH-type models with symmetric stable innovations : indirect inference versus maximum likelihood. In: Computational Statistics & Data Analysis. 76, pp. 158-171. ISSN 0167-9473. eISSN 1872-7352

@article{Calzolari2014Estim-29014, title={Estimating GARCH-type models with symmetric stable innovations : indirect inference versus maximum likelihood}, year={2014}, doi={10.1016/j.csda.2013.07.028}, volume={76}, issn={0167-9473}, journal={Computational Statistics & Data Analysis}, pages={158--171}, author={Calzolari, Giorgio and Halbleib, Roxana and Parrini, Alessandro} }

Calzolari, Giorgio Computational statistics & data analysis ; 76 (2014). - S. 158-171 2014-09-23T09:55:00Z Halbleib, Roxana Halbleib, Roxana eng 2014 2014-09-23T09:55:00Z deposit-license Calzolari, Giorgio Parrini, Alessandro Financial returns exhibit conditional heteroscedasticity, asymmetric responses of their volatility to negative and positive returns (leverage effects) and fat tails. The αα-stable distribution is a natural candidate for capturing the tail-thickness of the conditional distribution of financial returns, while the GARCH-type models are very popular in depicting the conditional heteroscedasticity and leverage effects. However, practical implementation of αα-stable distribution in finance applications has been limited by its estimation difficulties. The performance of the indirect inference approach using GARCH models with Student’s tt distributed errors as auxiliary models is compared to the maximum likelihood approach for estimating GARCH-type models with symmetric αα-stable innovations. It is shown that the expected efficiency gains of the maximum likelihood approach come at high computational costs compared to the indirect inference method. Estimating GARCH-type models with symmetric stable innovations : indirect inference versus maximum likelihood Parrini, Alessandro

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto