KOPS - Das Institutionelle Repositorium der Universität Konstanz

Control of Recombination Pathways in TiO<sub>2</sub> Nanowire Hybrid Solar Cells Using Sn<sup>4+</sup> Dopants

Control of Recombination Pathways in TiO2 Nanowire Hybrid Solar Cells Using Sn4+ Dopants

Zitieren

Dateien zu dieser Ressource

Dateien Größe Format Anzeige

Zu diesem Dokument gibt es keine Dateien.

DORMAN, James A., Jonas WEICKERT, Julian B. REINDL, Martin PUTNIK, Andreas WISNET, Matthias NOEBELS, Christina SCHEU, Lukas SCHMIDT-MENDE, 2014. Control of Recombination Pathways in TiO2 Nanowire Hybrid Solar Cells Using Sn4+ Dopants. In: The Journal of Physical Chemistry C. 118(30), pp. 16672-16679. ISSN 1932-7447. eISSN 1932-7455. Available under: doi: 10.1021/jp412650r

@article{Dorman2014Contr-28959, title={Control of Recombination Pathways in TiO2 Nanowire Hybrid Solar Cells Using Sn4+ Dopants}, year={2014}, doi={10.1021/jp412650r}, number={30}, volume={118}, issn={1932-7447}, journal={The Journal of Physical Chemistry C}, pages={16672--16679}, author={Dorman, James A. and Weickert, Jonas and Reindl, Julian B. and Putnik, Martin and Wisnet, Andreas and Noebels, Matthias and Scheu, Christina and Schmidt-Mende, Lukas} }

2014 Scheu, Christina Reindl, Julian B. Putnik, Martin Noebels, Matthias The journal of physical chemistry / c ; 118 (2014), 30. - S. 16672-16679 Reindl, Julian B. Weickert, Jonas Schmidt-Mende, Lukas Scheu, Christina Noebels, Matthias Wisnet, Andreas Schmidt-Mende, Lukas eng Dorman, James A. Putnik, Martin Hybrid nanostructures have shown increasing potential as a replacement for Si solar cells due to the availability of low-cost material combinations. However, up to now, hybrid solar cells, where photon absorption occurs in a semiconducting polymer and charge separation occurs at a metal oxide-polymer interface, show limited efficiencies. One limitation is caused by a relative low charge carrier mobility in the metal oxide. Here we addressed this issue and describe the use of a Sn:TiO<sub>2</sub>|TiO<sub>2</sub> core–shell nanowire array to increase the charge-carrier mobility in the core of the nanowires while decreasing the charge-carrier recombination at the metal oxide–polymer interface due to fast electron extraction from this interface, driven by a cascaded conduction band energy from shell to core of the nanowires. These doped cores with an undoped shell structure resulted in impressive efficiency improvement in hybrid solar cells of 33% over the reference TiO<sub>2</sub>-based device. Additionally, this device structure resulted in a 17% increase in recombination lifetimes based on both photovoltage decay measurements and impedance spectroscopy. Recombination mechanisms are proposed for the core and core–shell systems to highlight the various effects of the Sn<sup>4+</sup>-doped TiO<sub>2</sub> nanowire arrays. Doped core–shell structures have the potential for application in the hybrid-type devices without the limitations that are seen with the current dual metal oxide structures due to the seamless interface of the metal oxide host for direct transport of the electrons into the highly mobile core material. 2014-09-11T11:33:31Z Dorman, James A. Weickert, Jonas deposit-license Control of Recombination Pathways in TiO<sub>2</sub> Nanowire Hybrid Solar Cells Using Sn<sup>4+</sup> Dopants Wisnet, Andreas 2014-09-11T11:33:31Z

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto