Spin entanglement generation and detection in semiconductor nanostructures
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Entanglement, viz. the non-separability of quantum states, is a fundamental prediction of quantum mechanics, which is at odds with the classical perception of reality. Furthermore, it constitutes a resource for quantum computation and quantum communication. Electronic degrees of freedom in nanostructures – in particular the spin – constitute promising candidates to implement quantum information architectures in scalable solid state circuits. In this topical review, we will summarize some efforts to create and detect entanglement in such structures.
We concentrate first on entanglement in double quantum dots, since they promise to be viable candidates to produce entanglement by confining electrons to a small interaction region. The quantitative detection of the entanglement through transport measurements can be done via current and noise. Secondly, we concentrate on the creation of spin entanglement at quantum point contacts, which has the advantage that the two electrons are automatically spatially separated. We discuss the possibility of performing a Bell test of non-local correlations. However, as we will point out, a reliable entanglement detection can be performed by current-correlation measurements, although they require some trust in the experimental setup. Finally,we present a hierarchy of mesoscopic Bell tests, which could be useful to evaluate theoretical proposals and experimental setups.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BELZIG, Wolfgang, Adam BEDNORZ, 2014. Spin entanglement generation and detection in semiconductor nanostructures. In: physica status solidi (b). 2014, 251(9), pp. 1945-1954. ISSN 0370-1972. Available under: doi: 10.1002/pssb.201350253BibTex
@article{Belzig2014entan-28904, year={2014}, doi={10.1002/pssb.201350253}, title={Spin entanglement generation and detection in semiconductor nanostructures}, number={9}, volume={251}, issn={0370-1972}, journal={physica status solidi (b)}, pages={1945--1954}, author={Belzig, Wolfgang and Bednorz, Adam} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28904"> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/28904"/> <dc:contributor>Belzig, Wolfgang</dc:contributor> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/3.0/"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Belzig, Wolfgang</dc:creator> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-09-17T07:48:25Z</dc:date> <dc:rights>Attribution 3.0 Unported</dc:rights> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/28904/2/Belzig_289040.pdf"/> <dcterms:bibliographicCitation>Physica Status Solidi B ; 251 (2014), 9. - S. 1945–1954</dcterms:bibliographicCitation> <dc:creator>Bednorz, Adam</dc:creator> <dcterms:issued>2014</dcterms:issued> <dcterms:abstract xml:lang="eng">Entanglement, viz. the non-separability of quantum states, is a fundamental prediction of quantum mechanics, which is at odds with the classical perception of reality. Furthermore, it constitutes a resource for quantum computation and quantum communication. Electronic degrees of freedom in nanostructures – in particular the spin – constitute promising candidates to implement quantum information architectures in scalable solid state circuits. In this topical review, we will summarize some efforts to create and detect entanglement in such structures.<br />We concentrate first on entanglement in double quantum dots, since they promise to be viable candidates to produce entanglement by confining electrons to a small interaction region. The quantitative detection of the entanglement through transport measurements can be done via current and noise. Secondly, we concentrate on the creation of spin entanglement at quantum point contacts, which has the advantage that the two electrons are automatically spatially separated. We discuss the possibility of performing a Bell test of non-local correlations. However, as we will point out, a reliable entanglement detection can be performed by current-correlation measurements, although they require some trust in the experimental setup. Finally,we present a hierarchy of mesoscopic Bell tests, which could be useful to evaluate theoretical proposals and experimental setups.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:contributor>Bednorz, Adam</dc:contributor> <dcterms:title>Spin entanglement generation and detection in semiconductor nanostructures</dcterms:title> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/28904/2/Belzig_289040.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-09-17T07:48:25Z</dcterms:available> </rdf:Description> </rdf:RDF>