Type of Publication: | Journal article |
URI (citable link): | http://nbn-resolving.de/urn:nbn:de:bsz:352-283333 |
Author: | Bußkamp, Holger; Keller, Sascha; Robotta, Marta; Drescher, Malte; Marx, Andreas |
Year of publication: | 2014 |
Published in: | Beilstein Journal of Organic Chemistry ; 10 (2014). - pp. 1037-1046. - ISSN 2195-951X. - eISSN 1860-5397 |
Pubmed ID: | 24991255 |
DOI (citable link): | https://dx.doi.org/10.3762/bjoc.10.104 |
Summary: |
The predictability of DNA self-assembly is exploited in many nanotechnological approaches. Inspired by naturally existing self-assembled DNA architectures, branched DNA has been developed that allows self-assembly to predesigned architectures with dimensions on the nanometer scale. DNA is an attractive material for generation of nanostructures due to a plethora of enzymes which modify DNA with high accuracy, providing a toolbox for many different manipulations to construct nanometer scaled objects. We present a straightforward synthesis of a rigid DNA branching building block successfully used for the generation of DNA networks by self-assembly and network formation by enzymatic DNA synthesis. The Y-shaped 3-armed DNA construct, bearing 3 primer strands is accepted by Taq DNA polymerase. The enzyme uses each arm as primer strand and incorporates the branched construct into large assemblies during PCR. The networks were investigated by agarose gel electrophoresis, atomic force microscopy, dynamic light scattering, and electron paramagnetic resonance spectroscopy. The findings indicate that rather rigid DNA networks were formed. This presents a new bottom-up approach for DNA material formation and might find applications like in the generation of functional hydrogels.
|
Subject (DDC): | 540 Chemistry |
Keywords: | AFM, branched DNA, DNA, DNA polymerase, nanotechnology, nucleic acids, PCR, self-assembly |
Link to License: | In Copyright |
Bibliography of Konstanz: | Yes |
BUSSKAMP, Holger, Sascha KELLER, Marta ROBOTTA, Malte DRESCHER, Andreas MARX, 2014. A new building block for DNA network formation by self-assembly and polymerase chain reaction. In: Beilstein Journal of Organic Chemistry. 10, pp. 1037-1046. ISSN 2195-951X. eISSN 1860-5397. Available under: doi: 10.3762/bjoc.10.104
@article{Bukamp2014build-28333, title={A new building block for DNA network formation by self-assembly and polymerase chain reaction}, year={2014}, doi={10.3762/bjoc.10.104}, volume={10}, issn={2195-951X}, journal={Beilstein Journal of Organic Chemistry}, pages={1037--1046}, author={Bußkamp, Holger and Keller, Sascha and Robotta, Marta and Drescher, Malte and Marx, Andreas} }
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/28333"> <dc:creator>Marx, Andreas</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-07-17T09:58:13Z</dc:date> <dc:contributor>Keller, Sascha</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/29"/> <dc:creator>Drescher, Malte</dc:creator> <dc:creator>Robotta, Marta</dc:creator> <dcterms:bibliographicCitation>Beilstein Journal of Organic Chemistry ; 10 (2014). - S. 1037-1046</dcterms:bibliographicCitation> <dc:contributor>Bußkamp, Holger</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dc:creator>Bußkamp, Holger</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/28333/1/Busskamp_283333.pdf"/> <dcterms:title>A new building block for DNA network formation by self-assembly and polymerase chain reaction</dcterms:title> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:issued>2014</dcterms:issued> <dc:creator>Keller, Sascha</dc:creator> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:abstract xml:lang="eng">The predictability of DNA self-assembly is exploited in many nanotechnological approaches. Inspired by naturally existing self-assembled DNA architectures, branched DNA has been developed that allows self-assembly to predesigned architectures with dimensions on the nanometer scale. DNA is an attractive material for generation of nanostructures due to a plethora of enzymes which modify DNA with high accuracy, providing a toolbox for many different manipulations to construct nanometer scaled objects. We present a straightforward synthesis of a rigid DNA branching building block successfully used for the generation of DNA networks by self-assembly and network formation by enzymatic DNA synthesis. The Y-shaped 3-armed DNA construct, bearing 3 primer strands is accepted by Taq DNA polymerase. The enzyme uses each arm as primer strand and incorporates the branched construct into large assemblies during PCR. The networks were investigated by agarose gel electrophoresis, atomic force microscopy, dynamic light scattering, and electron paramagnetic resonance spectroscopy. The findings indicate that rather rigid DNA networks were formed. This presents a new bottom-up approach for DNA material formation and might find applications like in the generation of functional hydrogels.</dcterms:abstract> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/28333"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/28333/1/Busskamp_283333.pdf"/> <dc:contributor>Marx, Andreas</dc:contributor> <dc:contributor>Robotta, Marta</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-07-17T09:58:13Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/29"/> <dc:contributor>Drescher, Malte</dc:contributor> </rdf:Description> </rdf:RDF>
Busskamp_283333.pdf | 213 |