KOPS - The Institutional Repository of the University of Konstanz

On-line Clustering for Real-Time Topic Detection in Social Media Streaming Data

On-line Clustering for Real-Time Topic Detection in Social Media Streaming Data

Cite This

Files in this item

Checksum: MD5:eaf96581608feb9d168f8139c1b31f76

POPOVICI, Robert, Andreas WEILER, Michael GROSSNIKLAUS, 2014. On-line Clustering for Real-Time Topic Detection in Social Media Streaming Data. SNOW 2014 Data Challenge. Seoul, Korea, Apr 8, 2014. In: PAPADOPOULOS, Symeon, ed. and others. Proceedings of the SNOW 2014 Data Challenge co-located with 23rd International World Wide Web Conference (WWW 2014), Seoul, Korea, April 8, 2014, pp. 57-63

@inproceedings{Popovici2014Onlin-28149, title={On-line Clustering for Real-Time Topic Detection in Social Media Streaming Data}, url={http://ceur-ws.org/Vol-1150/popovici.pdf}, year={2014}, number={1150}, series={CEUR workshop proceedings}, booktitle={Proceedings of the SNOW 2014 Data Challenge co-located with 23rd International World Wide Web Conference (WWW 2014), Seoul, Korea, April 8, 2014}, pages={57--63}, editor={Papadopoulos, Symeon}, author={Popovici, Robert and Weiler, Andreas and Grossniklaus, Michael} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/28149"> <dc:creator>Grossniklaus, Michael</dc:creator> <dc:contributor>Weiler, Andreas</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-06-20T12:47:06Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:contributor>Popovici, Robert</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dcterms:bibliographicCitation>Proceedings of the SNOW 2014 Data Challenge co-located with 23rd International World Wide Web Conference (WWW 2014), Seoul, Korea, April 8, 2014 / ed. by Symeon Papadopoulos ... - 2014. - S. 57-63. - (CEUR workshop proceedings ; 1150)</dcterms:bibliographicCitation> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Weiler, Andreas</dc:creator> <dc:contributor>Grossniklaus, Michael</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/28149/2/Popovici_281496.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-06-20T12:47:06Z</dcterms:available> <dc:language>eng</dc:language> <dcterms:issued>2014</dcterms:issued> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/28149"/> <dcterms:title>On-line Clustering for Real-Time Topic Detection in Social Media Streaming Data</dcterms:title> <dcterms:abstract xml:lang="eng">The continuous growth of social networks and the active use of social media services result in massive amounts of user-generated data. Worldwide, more and more people report and distribute up-to-date information about al- most any topic. At the same time, there is an increasing interest in information that can be gathered from this data. The popularity of new services and technologies that produce and consume data streams imposes new challenges on the analysis, namely, in terms of handling high volumes of noisy data in real-time. Since social media analysis is concerned with investigating current topics and actual events around the world, there is a pronounced need to detect topics in the data and to directly display their occurrence to analysts or other users. In this paper, we present an on-line clustering approach, which builds on traditional data mining methods to address the new requirements of data stream mining: (a) fast incremental processing of incoming stream objects, (b) compactness of data representation, and (c) efficient identification of changes in evolving clustering models.</dcterms:abstract> <dcterms:rights rdf:resource="https://kops.uni-konstanz.de/page/termsofuse"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/28149/2/Popovici_281496.pdf"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:creator>Popovici, Robert</dc:creator> </rdf:Description> </rdf:RDF>

Downloads since Oct 1, 2014 (Information about access statistics)

Popovici_281496.pdf 391

This item appears in the following Collection(s)

Search KOPS


Browse

My Account