On-line Clustering for Real-Time Topic Detection in Social Media Streaming Data

Zitieren

Dateien zu dieser Ressource

Prüfsumme: MD5:eaf96581608feb9d168f8139c1b31f76

POPOVICI, Robert, Andreas WEILER, Michael GROSSNIKLAUS, 2014. On-line Clustering for Real-Time Topic Detection in Social Media Streaming Data. SNOW 2014 Data Challenge. Seoul, Korea, 8. Apr 2014. In: PAPADOPOULOS, Symeon, ed. and others. Proceedings of the SNOW 2014 Data Challenge co-located with 23rd International World Wide Web Conference (WWW 2014), Seoul, Korea, April 8, 2014. SNOW 2014 Data Challenge. Seoul, Korea, 8. Apr 2014, pp. 57-63

@inproceedings{Popovici2014Onlin-28149, title={On-line Clustering for Real-Time Topic Detection in Social Media Streaming Data}, year={2014}, number={1150}, series={CEUR workshop proceedings}, booktitle={Proceedings of the SNOW 2014 Data Challenge co-located with 23rd International World Wide Web Conference (WWW 2014), Seoul, Korea, April 8, 2014}, pages={57--63}, editor={Papadopoulos, Symeon}, author={Popovici, Robert and Weiler, Andreas and Grossniklaus, Michael} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/28149"> <dc:creator>Grossniklaus, Michael</dc:creator> <dc:contributor>Weiler, Andreas</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-06-20T12:47:06Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:contributor>Popovici, Robert</dc:contributor> <dcterms:bibliographicCitation>Proceedings of the SNOW 2014 Data Challenge co-located with 23rd International World Wide Web Conference (WWW 2014), Seoul, Korea, April 8, 2014 / ed. by Symeon Papadopoulos ... - 2014. - S. 57-63. - (CEUR workshop proceedings ; 1150)</dcterms:bibliographicCitation> <dcterms:rights rdf:resource="http://nbn-resolving.org/urn:nbn:de:bsz:352-20140905103605204-4002607-1"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Weiler, Andreas</dc:creator> <dc:contributor>Grossniklaus, Michael</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/28149/2/Popovici_281496.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-06-20T12:47:06Z</dcterms:available> <dc:language>eng</dc:language> <dcterms:issued>2014</dcterms:issued> <dc:rights>deposit-license</dc:rights> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/28149"/> <dcterms:title>On-line Clustering for Real-Time Topic Detection in Social Media Streaming Data</dcterms:title> <dcterms:abstract xml:lang="eng">The continuous growth of social networks and the active use of social media services result in massive amounts of user-generated data. Worldwide, more and more people report and distribute up-to-date information about al- most any topic. At the same time, there is an increasing interest in information that can be gathered from this data. The popularity of new services and technologies that produce and consume data streams imposes new challenges on the analysis, namely, in terms of handling high volumes of noisy data in real-time. Since social media analysis is concerned with investigating current topics and actual events around the world, there is a pronounced need to detect topics in the data and to directly display their occurrence to analysts or other users. In this paper, we present an on-line clustering approach, which builds on traditional data mining methods to address the new requirements of data stream mining: (a) fast incremental processing of incoming stream objects, (b) compactness of data representation, and (c) efficient identification of changes in evolving clustering models.</dcterms:abstract> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/28149/2/Popovici_281496.pdf"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:creator>Popovici, Robert</dc:creator> </rdf:Description> </rdf:RDF>

Dateiabrufe seit 01.10.2014 (Informationen über die Zugriffsstatistik)

Popovici_281496.pdf 214

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto