Aufgrund von Vorbereitungen auf eine neue Version von KOPS, können kommenden Montag und Dienstag keine Publikationen eingereicht werden. (Due to preparations for a new version of KOPS, no publications can be submitted next Monday and Tuesday.)
Type of Publication: | Preprint |
URI (citable link): | http://nbn-resolving.de/urn:nbn:de:bsz:352-279961 |
Author: | Iapichino, Laura; Quarteroni, Alfio; Rozza, Gianluigi; Volkwein, Stefan |
Year of publication: | 2014 |
Summary: |
In this paper we present a method for the solution of Stokes parametrized equations in domain composed by an arbitrary number of predefined shapes. The novelty of the proposed approach is the possibility to use the set of precomputed bases to solve Stokes equations in very different computational domains, defined by combining one or more reference geometries. In order to define a set of basis functions that can be used for an enlarged number of possible geometrical configurations, the method requires the use of artificial parameter functions. Due to this assumption, the selection of the set of the basis functions is performed through an optimization greedy algorithm, that represents an alternative technique to the classical greedy approach.
|
Subject (DDC): | 510 Mathematics |
Link to License: | In Copyright |
Bibliography of Konstanz: | Yes |
IAPICHINO, Laura, Alfio QUARTERONI, Gianluigi ROZZA, Stefan VOLKWEIN, 2014. Reduced basis method for the Stokes equations in decomposable domains using greedy optimization
@unpublished{Iapichino2014Reduc-27996, title={Reduced basis method for the Stokes equations in decomposable domains using greedy optimization}, year={2014}, author={Iapichino, Laura and Quarteroni, Alfio and Rozza, Gianluigi and Volkwein, Stefan} }
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/27996"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dcterms:issued>2014</dcterms:issued> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/52"/> <dc:language>eng</dc:language> <dc:rights>terms-of-use</dc:rights> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/27996"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-06-12T11:38:33Z</dcterms:available> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:contributor>Rozza, Gianluigi</dc:contributor> <dc:creator>Volkwein, Stefan</dc:creator> <dc:creator>Rozza, Gianluigi</dc:creator> <dc:creator>Iapichino, Laura</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-06-12T11:38:33Z</dc:date> <dc:contributor>Volkwein, Stefan</dc:contributor> <dcterms:title>Reduced basis method for the Stokes equations in decomposable domains using greedy optimization</dcterms:title> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/52"/> <dcterms:abstract xml:lang="eng">In this paper we present a method for the solution of Stokes parametrized equations in domain composed by an arbitrary number of predefined shapes. The novelty of the proposed approach is the possibility to use the set of precomputed bases to solve Stokes equations in very different computational domains, defined by combining one or more reference geometries. In order to define a set of basis functions that can be used for an enlarged number of possible geometrical configurations, the method requires the use of artificial parameter functions. Due to this assumption, the selection of the set of the basis functions is performed through an optimization greedy algorithm, that represents an alternative technique to the classical greedy approach.</dcterms:abstract> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/27996/1/Volkwein_279961.pdf"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/27996/1/Volkwein_279961.pdf"/> <dc:creator>Quarteroni, Alfio</dc:creator> <dc:contributor>Iapichino, Laura</dc:contributor> <dc:contributor>Quarteroni, Alfio</dc:contributor> </rdf:Description> </rdf:RDF>
Volkwein_279961.pdf | 377 |