Reduced basis method for the Stokes equations in decomposable domains using greedy optimization
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In this paper we present a method for the solution of Stokes parametrized equations in domain composed by an arbitrary number of predefined shapes. The novelty of the proposed approach is the possibility to use the set of precomputed bases to solve Stokes equations in very different computational domains, defined by combining one or more reference geometries. In order to define a set of basis functions that can be used for an enlarged number of possible geometrical configurations, the method requires the use of artificial parameter functions. Due to this assumption, the selection of the set of the basis functions is performed through an optimization greedy algorithm, that represents an alternative technique to the classical greedy approach.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
IAPICHINO, Laura, Alfio QUARTERONI, Gianluigi ROZZA, Stefan VOLKWEIN, 2014. Reduced basis method for the Stokes equations in decomposable domains using greedy optimizationBibTex
@unpublished{Iapichino2014Reduc-27996, year={2014}, title={Reduced basis method for the Stokes equations in decomposable domains using greedy optimization}, author={Iapichino, Laura and Quarteroni, Alfio and Rozza, Gianluigi and Volkwein, Stefan} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/27996"> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/27996"/> <dc:creator>Volkwein, Stefan</dc:creator> <dc:contributor>Iapichino, Laura</dc:contributor> <dc:contributor>Quarteroni, Alfio</dc:contributor> <dc:contributor>Volkwein, Stefan</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-06-12T11:38:33Z</dc:date> <dc:creator>Rozza, Gianluigi</dc:creator> <dc:rights>terms-of-use</dc:rights> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Quarteroni, Alfio</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-06-12T11:38:33Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Rozza, Gianluigi</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2014</dcterms:issued> <dcterms:title>Reduced basis method for the Stokes equations in decomposable domains using greedy optimization</dcterms:title> <dc:language>eng</dc:language> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/27996/1/Volkwein_279961.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dcterms:abstract xml:lang="eng">In this paper we present a method for the solution of Stokes parametrized equations in domain composed by an arbitrary number of predefined shapes. The novelty of the proposed approach is the possibility to use the set of precomputed bases to solve Stokes equations in very different computational domains, defined by combining one or more reference geometries. In order to define a set of basis functions that can be used for an enlarged number of possible geometrical configurations, the method requires the use of artificial parameter functions. Due to this assumption, the selection of the set of the basis functions is performed through an optimization greedy algorithm, that represents an alternative technique to the classical greedy approach.</dcterms:abstract> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/27996/1/Volkwein_279961.pdf"/> <dc:creator>Iapichino, Laura</dc:creator> </rdf:Description> </rdf:RDF>