Reduced basis method for the Stokes equations in decomposable domains using greedy optimization
Reduced basis method for the Stokes equations in decomposable domains using greedy optimization
Datum
2014
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
eISSN
item.preview.dc.identifier.isbn
Bibliografische Daten
Verlag
Schriftenreihe
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
EU-Projektnummer
Projekt
Open Access-Veröffentlichung
Sammlungen
Titel in einer weiteren Sprache
Publikationstyp
Preprint
Publikationsstatus
Erschienen in
Zusammenfassung
In this paper we present a method for the solution of Stokes parametrized equations in domain composed by an arbitrary number of predefined shapes. The novelty of the proposed approach is the possibility to use the set of precomputed bases to solve Stokes equations in very different computational domains, defined by combining one or more reference geometries. In order to define a set of basis functions that can be used for an enlarged number of possible geometrical configurations, the method requires the use of artificial parameter functions. Due to this assumption, the selection of the set of the basis functions is performed through an optimization greedy algorithm, that represents an alternative technique to the classical greedy approach.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined. - (undefined; undefined)
Zitieren
ISO 690
IAPICHINO, Laura, Alfio QUARTERONI, Gianluigi ROZZA, Stefan VOLKWEIN, 2014. Reduced basis method for the Stokes equations in decomposable domains using greedy optimizationBibTex
@unpublished{Iapichino2014Reduc-27996, year={2014}, title={Reduced basis method for the Stokes equations in decomposable domains using greedy optimization}, author={Iapichino, Laura and Quarteroni, Alfio and Rozza, Gianluigi and Volkwein, Stefan} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/27996"> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/27996"/> <dc:creator>Volkwein, Stefan</dc:creator> <dc:contributor>Iapichino, Laura</dc:contributor> <dc:contributor>Quarteroni, Alfio</dc:contributor> <dc:contributor>Volkwein, Stefan</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-06-12T11:38:33Z</dc:date> <dc:creator>Rozza, Gianluigi</dc:creator> <dc:rights>terms-of-use</dc:rights> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Quarteroni, Alfio</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-06-12T11:38:33Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Rozza, Gianluigi</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2014</dcterms:issued> <dcterms:title>Reduced basis method for the Stokes equations in decomposable domains using greedy optimization</dcterms:title> <dc:language>eng</dc:language> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/27996/1/Volkwein_279961.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dcterms:abstract xml:lang="eng">In this paper we present a method for the solution of Stokes parametrized equations in domain composed by an arbitrary number of predefined shapes. The novelty of the proposed approach is the possibility to use the set of precomputed bases to solve Stokes equations in very different computational domains, defined by combining one or more reference geometries. In order to define a set of basis functions that can be used for an enlarged number of possible geometrical configurations, the method requires the use of artificial parameter functions. Due to this assumption, the selection of the set of the basis functions is performed through an optimization greedy algorithm, that represents an alternative technique to the classical greedy approach.</dcterms:abstract> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/27996/1/Volkwein_279961.pdf"/> <dc:creator>Iapichino, Laura</dc:creator> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja