Channel flow of a tensorial shear-thinning Maxwell model : Lattice Boltzmann simulations
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We discuss pressure-driven channel flow for a model of shear-thinning glass-forming fluids, employing a modified lattice-Boltzmann (LB) simulation scheme. The model is motivated by a recent microscopic approach to the nonlinear rheology of colloidal suspensions and captures a nonvanishing dynamical yield stress and the appearance of normal-stress differences and a flow-induced pressure contribution. The standard LB algorithm is extended to deal with tensorial, nonlinear constitutive equations of this class. The new LB scheme is tested in 2D pressure-driven channel flow and reproduces the analytical steady-state solution. The transient dynamics after startup and removal of the pressure gradient reproduce a finite stopping time for the cessation flow of yield-stress fluids in agreement with previous analytical estimates.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
PAPENKORT, Simon, Thomas VOIGTMANN, 2014. Channel flow of a tensorial shear-thinning Maxwell model : Lattice Boltzmann simulations. In: The Journal of Chemical Physics. 2014, 140(16), 164507. ISSN 0021-9606. eISSN 1089-7690. Available under: doi: 10.1063/1.4872219BibTex
@article{Papenkort2014-04-28Chann-27694, year={2014}, doi={10.1063/1.4872219}, title={Channel flow of a tensorial shear-thinning Maxwell model : Lattice Boltzmann simulations}, number={16}, volume={140}, issn={0021-9606}, journal={The Journal of Chemical Physics}, author={Papenkort, Simon and Voigtmann, Thomas}, note={Article Number: 164507} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/27694"> <dcterms:issued>2014-04-28</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Papenkort, Simon</dc:creator> <dc:contributor>Voigtmann, Thomas</dc:contributor> <dc:contributor>Papenkort, Simon</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-05-05T09:59:05Z</dcterms:available> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/27694"/> <dc:rights>terms-of-use</dc:rights> <dcterms:bibliographicCitation>The Journal of Chemical Physics ; 140 (2014), 16. - 164507</dcterms:bibliographicCitation> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/27694/1/Papenkort_276948.pdf"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:creator>Voigtmann, Thomas</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/27694/1/Papenkort_276948.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-05-05T09:59:05Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">We discuss pressure-driven channel flow for a model of shear-thinning glass-forming fluids, employing a modified lattice-Boltzmann (LB) simulation scheme. The model is motivated by a recent microscopic approach to the nonlinear rheology of colloidal suspensions and captures a nonvanishing dynamical yield stress and the appearance of normal-stress differences and a flow-induced pressure contribution. The standard LB algorithm is extended to deal with tensorial, nonlinear constitutive equations of this class. The new LB scheme is tested in 2D pressure-driven channel flow and reproduces the analytical steady-state solution. The transient dynamics after startup and removal of the pressure gradient reproduce a finite stopping time for the cessation flow of yield-stress fluids in agreement with previous analytical estimates.</dcterms:abstract> <dcterms:title>Channel flow of a tensorial shear-thinning Maxwell model : Lattice Boltzmann simulations</dcterms:title> </rdf:Description> </rdf:RDF>