On robust local polynomial estimation with Long-memory errors

Zitieren

Dateien zu dieser Ressource

Dateien Größe Format Anzeige

Zu diesem Dokument gibt es keine Dateien.

BERAN, Jan, Yuanhua FENG, Sucharita GHOSH, Philipp SIBBERTSEN, 2002. On robust local polynomial estimation with Long-memory errors. In: International Journal of Forecasting. 18(2), pp. 227-241. ISSN 0169-2070. eISSN 1872-8200. Available under: doi: 10.1016/S0169-2070(01)00155-8

@article{Beran2002robus-27569, title={On robust local polynomial estimation with Long-memory errors}, year={2002}, doi={10.1016/S0169-2070(01)00155-8}, number={2}, volume={18}, issn={0169-2070}, journal={International Journal of Forecasting}, pages={227--241}, author={Beran, Jan and Feng, Yuanhua and Ghosh, Sucharita and Sibbertsen, Philipp} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/27569"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-04-16T11:42:05Z</dc:date> <dcterms:bibliographicCitation>International Journal of Forecasting ; 18 (2002), 2. - S. 227-241</dcterms:bibliographicCitation> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/27569"/> <dc:creator>Ghosh, Sucharita</dc:creator> <dcterms:title>On robust local polynomial estimation with Long-memory errors</dcterms:title> <dc:contributor>Feng, Yuanhua</dc:contributor> <dc:language>eng</dc:language> <dc:creator>Feng, Yuanhua</dc:creator> <dcterms:abstract xml:lang="eng">Prediction in time series models with a trend requires reliable estimation of the trend function at the right end of the observed series. Local polynomial smoothing is a suitable tool because boundary corrections are included implicitly. However, outliers may lead to unreliable estimates, if least-squares regression is used. In this paper, local polynomial smoothing based on M-estimation is considered for the case where the error process exhibits long-range dependence. In contrast to the iid case, all M-estimators are asymptotically equivalent to the least-square solution, under the (ideal) Gaussian model. The potential usefulness of the proposal for forecasting is illustrated by practical and simulated examples. A simulation study shows that outliers have a major effect on nonrobust bandwidth selection, in particular due to the change of the dependence structure.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:creator>Beran, Jan</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-04-16T11:42:05Z</dcterms:available> <dc:rights>deposit-license</dc:rights> <dc:contributor>Beran, Jan</dc:contributor> <dc:creator>Sibbertsen, Philipp</dc:creator> <dc:contributor>Sibbertsen, Philipp</dc:contributor> <dc:contributor>Ghosh, Sucharita</dc:contributor> <dcterms:rights rdf:resource="http://nbn-resolving.org/urn:nbn:de:bsz:352-20140905103605204-4002607-1"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2002</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> </rdf:Description> </rdf:RDF>

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto