The combined viscous semi-classical limit for a quantum hydrodynamic system with barrier potential
The combined viscous semi-classical limit for a quantum hydrodynamic system with barrier potential
Date
2014
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
Konstanzer Schriften in Mathematik; 329
URI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Working Paper/Technical Report
Publication status
Published in
Abstract
We investigate the viscous model of quantum hydrodynamics, which describes the charge transport in a certain semiconductor. Quantum mechanical effects lead to third order derivatives, turning the stationary system into an elliptic system of mixed order in the sense of Douglis-Nirenberg. In the case most relevant to applications, the semiconductor device features a piecewise constant barrier potential. In the case of thermodynamic
equilibrium, we obtain asymptotic expansions of interfacial layers of the particle density in neighbourhoods of the jump points of this barrier potential, and we present rigorous proofs of uniform estimates of the remainder terms in these asymptotic expansions.
equilibrium, we obtain asymptotic expansions of interfacial layers of the particle density in neighbourhoods of the jump points of this barrier potential, and we present rigorous proofs of uniform estimates of the remainder terms in these asymptotic expansions.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
partial differential equations
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
DREHER, Michael, Johannes SCHNUR, 2014. The combined viscous semi-classical limit for a quantum hydrodynamic system with barrier potentialBibTex
@techreport{Dreher2014combi-27502, year={2014}, series={Konstanzer Schriften in Mathematik}, title={The combined viscous semi-classical limit for a quantum hydrodynamic system with barrier potential}, number={329}, author={Dreher, Michael and Schnur, Johannes} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/27502"> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/27502"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/27502/1/Dreher_275021.pdf"/> <dc:creator>Dreher, Michael</dc:creator> <dcterms:abstract xml:lang="eng">We investigate the viscous model of quantum hydrodynamics, which describes the charge transport in a certain semiconductor. Quantum mechanical effects lead to third order derivatives, turning the stationary system into an elliptic system of mixed order in the sense of Douglis-Nirenberg. In the case most relevant to applications, the semiconductor device features a piecewise constant barrier potential. In the case of thermodynamic<br />equilibrium, we obtain asymptotic expansions of interfacial layers of the particle density in neighbourhoods of the jump points of this barrier potential, and we present rigorous proofs of uniform estimates of the remainder terms in these asymptotic expansions.</dcterms:abstract> <dc:contributor>Dreher, Michael</dc:contributor> <dcterms:title>The combined viscous semi-classical limit for a quantum hydrodynamic system with barrier potential</dcterms:title> <dc:contributor>Schnur, Johannes</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-04-09T09:55:01Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/27502/1/Dreher_275021.pdf"/> <dc:rights>terms-of-use</dc:rights> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-04-09T09:55:01Z</dc:date> <dcterms:issued>2014</dcterms:issued> <dc:creator>Schnur, Johannes</dc:creator> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes