Event Identification and Tracking in Social Media Streaming Data

Zitieren

Dateien zu dieser Ressource

Prüfsumme: MD5:5f6900dc385d393a3956e7214e426b5e

WEILER, Andreas, Michael GROSSNIKLAUS, Marc H. SCHOLL, 2014. Event Identification and Tracking in Social Media Streaming Data. EDBT/ICDT. Athens, Greece, 28. Mär 2014. In: CANDAN, K. Selcuk, ed. and others. Proceedings of the Workshops of the EDBT / ICDT 2014 Joint Conference : Multimodal Social Data Management (MSDM) ; Athens, Greece, March 28 th, 2014. EDBT/ICDT. Athens, Greece, 28. Mär 2014, pp. 282-287

@inproceedings{Weiler2014Event-27471, title={Event Identification and Tracking in Social Media Streaming Data}, year={2014}, number={1133}, series={CEUR workshop proceedings}, booktitle={Proceedings of the Workshops of the EDBT / ICDT 2014 Joint Conference : Multimodal Social Data Management (MSDM) ; Athens, Greece, March 28 th, 2014}, pages={282--287}, editor={Candan, K. Selcuk}, author={Weiler, Andreas and Grossniklaus, Michael and Scholl, Marc H.}, note={Link zur Originalveröffentlichung: http://ceur-ws.org/Vol-1133/paper-46.pdf} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/27471"> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:language>eng</dc:language> <dc:contributor>Grossniklaus, Michael</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dcterms:bibliographicCitation>Proceedings of the Workshops of the EDBT/ICDT 2014 Joint Conference : Multimodal Social Data Management (MSDM) ; Athens, Greece, March 28th, 2014 / ed. by K. Selcuk Candan ... - 2014. - S. 282-287. - (CEUR workshop proceedings ; 1133)</dcterms:bibliographicCitation> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/27471"/> <dcterms:abstract xml:lang="eng">In recent years, the growing popularity and active use of social media services on the web have resulted in massive amounts of user-generated data. With these data available, there is also an increasing interest in analyzing it and to extract information from it. Since social media analysis is concerned with investigating current events around the world, there is a strong emphasis on identifying these evens as quickly as possible, ideally in real-time. In order to scale with the rapidly increasing volume of social media data, we propose to explore very simple event identification mechanisms, rather than applying the more complex approaches that have been proposed in the literature. In this paper, we present a first investigation along this motivation. We discuss a simple sliding window model, which uses shifts in the inverse document frequency (IDF) to capture trending terms as well as to track the evolution and the context around events. Further, we present an initial experimental evaluation of the results that we obtained by analyzing real-world data streams from Twitter.</dcterms:abstract> <dcterms:title>Event Identification and Tracking in Social Media Streaming Data</dcterms:title> <dcterms:rights rdf:resource="http://nbn-resolving.org/urn:nbn:de:bsz:352-20140905103605204-4002607-1"/> <dc:creator>Weiler, Andreas</dc:creator> <dc:creator>Scholl, Marc H.</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-05-20T09:09:44Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:contributor>Weiler, Andreas</dc:contributor> <dc:rights>deposit-license</dc:rights> <dc:contributor>Scholl, Marc H.</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/27471/2/Weiler_274714.pdf"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/27471/2/Weiler_274714.pdf"/> <dcterms:issued>2014</dcterms:issued> <dc:creator>Grossniklaus, Michael</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-05-20T09:09:44Z</dcterms:available> </rdf:Description> </rdf:RDF>

Dateiabrufe seit 01.10.2014 (Informationen über die Zugriffsstatistik)

Weiler_274714.pdf 531

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto