KOPS - The Institutional Repository of the University of Konstanz

The NOX1/4 inhibitor GKT136901 as selective and direct scavenger of peroxynitrite

The NOX1/4 inhibitor GKT136901 as selective and direct scavenger of peroxynitrite

Cite This

Files in this item

Checksum: MD5:9dc079d1eecf490132afcd3278ec8d59

SCHILDKNECHT, Stefan, Annemarie WEBER, Hanne GERDING, Regina PAPE, Marta ROBOTTA, Malte DRESCHER, Andreas MARQUARDT, Andreas DAIBER, Boris FERGER, Marcel LEIST, 2013. The NOX1/4 inhibitor GKT136901 as selective and direct scavenger of peroxynitrite. In: Current Medicinal Chemistry. 21(3), pp. 365-376. ISSN 0929-8673. eISSN 1875-533X. Available under: doi: 10.2174/09298673113209990179

@article{Schildknecht2013NOX14-27192, title={The NOX1/4 inhibitor GKT136901 as selective and direct scavenger of peroxynitrite}, year={2013}, doi={10.2174/09298673113209990179}, number={3}, volume={21}, issn={0929-8673}, journal={Current Medicinal Chemistry}, pages={365--376}, author={Schildknecht, Stefan and Weber, Annemarie and Gerding, Hanne and Pape, Regina and Robotta, Marta and Drescher, Malte and Marquardt, Andreas and Daiber, Andreas and Ferger, Boris and Leist, Marcel} }

eng Current Medicinal Chemistry ; 21 (2014), 3. - S. 365-376 The NOX1/4 inhibitor GKT136901 as selective and direct scavenger of peroxynitrite Weber, Annemarie Daiber, Andreas terms-of-use Pape, Regina Weber, Annemarie Gerding, Hanne Drescher, Malte Marquardt, Andreas Daiber, Andreas Pape, Regina 2013 Schildknecht, Stefan Leist, Marcel Gerding, Hanne Ferger, Boris Robotta, Marta Leist, Marcel NADPH oxidases (NOX), catalyzing the reduction of molecular oxygen to form the superoxide radical anion (<sup>•</sup>O<sub>2</sub> <sup>-</sup>) and hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), are involved in several pathological conditions, such as stroke, diabetes, atherosclerosis, but also in chronic neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, or multiple sclerosis. GKT136901 is a novel NOX-1/4 inhibitor with potential application in the areas of diabetic nephropathy, stroke, or neurodegeneration. In the present study, we investigated additional pharmacological activities of the compound with respect to direct free radical scavenging. GKT136901 did not interact with nitric oxide (<sup>•</sup>NO), <sup>•</sup>O<sub>2</sub> <sup>-</sup>, or hydroxyl radicals (<sup>•</sup>OH), but it acted as selective scavenger of peroxynitrite (PON) already in the submicromolar concentration range. Alpha synuclein (ASYN) is a protein involved in the pathogenesis of Parkinson's disease and a known target for PON-dependent tyrosine nitration. Submicromolar concentrations of GKT136901 prevented tyrosine nitration and di-tyrosine-dependent dimer formation of ASYN by PON as indicated by Western blot and mass spectrometric analysis. GKT136901 itself was degraded when exposed to PON. In a human neuronal cell model, GKT136901 prevented both the depletion of reduced intracellular glutathione, and the degeneration of neurites when present during PON treatment of the cells. When GKT136901 was applied after PON treatment, no protective effect was observed, thus excluding an impact of GKT136901 on cellular death/survival pathways. In summary, selective scavenging of PON is an additional pharmacological property of the NOX-1/4 inhibitor GKT136901, and this may add to the efficiency of the drug in several disease models. Schildknecht, Stefan Marquardt, Andreas Ferger, Boris Robotta, Marta 2014-03-28T13:11:10Z Drescher, Malte 2014-03-28T13:11:10Z

Downloads since Oct 1, 2014 (Information about access statistics)

Schildknecht_271294.pdf 276

This item appears in the following Collection(s)

Search KOPS


Browse

My Account