KOPS - The Institutional Repository of the University of Konstanz

Visual Analytics for the Prediction of Movie Rating and Box Office Performance

Visual Analytics for the Prediction of Movie Rating and Box Office Performance

Cite This

Files in this item

Checksum: MD5:f8d3a622657b6506b6430b23eeb27b6d

EL ASSADY, Mennatallah, Daniel HAFNER, Michael HUND, Alexander JӒGER, Wolfgang JENTNER, Christian ROHRDANTZ, Fabian FISCHER, Svenja SIMON, Tobias SCHRECK, Daniel KEIM, 2013. Visual Analytics for the Prediction of Movie Rating and Box Office Performance. VIS. Atlanta, Georgia, USA, Oct 13, 2013 - Oct 18, 2013. In: VIS 2013 : IEEE International Conference on Visual Analytics Science and Technology ; 13 - 18 October 2013, Atlanta, Georgia, USA

@inproceedings{ElAssady2013Visua-26533, title={Visual Analytics for the Prediction of Movie Rating and Box Office Performance}, year={2013}, booktitle={VIS 2013 : IEEE International Conference on Visual Analytics Science and Technology ; 13 - 18 October 2013, Atlanta, Georgia, USA}, author={El Assady, Mennatallah and Hafner, Daniel and Hund, Michael and Jӓger, Alexander and Jentner, Wolfgang and Rohrdantz, Christian and Fischer, Fabian and Simon, Svenja and Schreck, Tobias and Keim, Daniel} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/26533"> <dc:contributor>Simon, Svenja</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Schreck, Tobias</dc:contributor> <dcterms:issued>2013</dcterms:issued> <dc:contributor>Rohrdantz, Christian</dc:contributor> <dc:creator>Fischer, Fabian</dc:creator> <dc:creator>Schreck, Tobias</dc:creator> <dc:creator>Jӓger, Alexander</dc:creator> <dcterms:title>Visual Analytics for the Prediction of Movie Rating and Box Office Performance</dcterms:title> <dc:contributor>Jentner, Wolfgang</dc:contributor> <dc:language>eng</dc:language> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/26533"/> <dcterms:abstract xml:lang="eng">This paper describes our solution to the IEEE VAST 2013 Mini Challenge 11. The task of the challenge was to create a visual and interactive tool to predict the popularity of new movies in terms of viewer ratings and ticket sales for the opening weekend in the U.S. The data usage was restricted by the challenge organizers to data from the Internet Movie Database (IMDb)2 and a predefined set of Twitter3 microblog messages. To tackle the challenge we designed a system together with an analysis workflow, combining machine learning and visualization paradigms in order to obtain accurate predictions. In Section 2 we describe the machine learning components used within the analysis workflow. Next, in Section 3, we describe where and how the human analyst is enabled to enhance the prediction with her/his world knowledge. Finally, Section 4 concludes the paper providing an evaluation of the prediction accuracy with and without human intervention.</dcterms:abstract> <dc:contributor>Hafner, Daniel</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-26T10:50:39Z</dc:date> <dc:creator>Keim, Daniel</dc:creator> <dc:creator>Jentner, Wolfgang</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/26533/2/Hafner_265333.pdf"/> <dc:creator>El Assady, Mennatallah</dc:creator> <dc:creator>Simon, Svenja</dc:creator> <dcterms:bibliographicCitation>VIS 2013 : IEEE International Conference on Visual Analytics Science and Technology ; 13-18 October 2013, Atlanta, Georgia, USA</dcterms:bibliographicCitation> <dc:contributor>Keim, Daniel</dc:contributor> <dc:contributor>Jӓger, Alexander</dc:contributor> <dc:creator>Hafner, Daniel</dc:creator> <dc:contributor>Hund, Michael</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/26533/2/Hafner_265333.pdf"/> <dc:creator>Rohrdantz, Christian</dc:creator> <dc:contributor>Fischer, Fabian</dc:contributor> <dcterms:rights rdf:resource="https://kops.uni-konstanz.de/page/termsofuse"/> <dc:contributor>El Assady, Mennatallah</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:creator>Hund, Michael</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-26T10:50:39Z</dcterms:available> </rdf:Description> </rdf:RDF>

Downloads since Oct 1, 2014 (Information about access statistics)

Hafner_265333.pdf 639

This item appears in the following Collection(s)

Search KOPS


Browse

My Account