KOPS - Das Institutionelle Repositorium der Universität Konstanz

Prediction errors in learning drug response from gene expression data : influence of labeling, sample size, and machine learning algorithm

Prediction errors in learning drug response from gene expression data : influence of labeling, sample size, and machine learning algorithm

Zitieren

Dateien zu dieser Ressource

Prüfsumme: MD5:cb2dbf8b78ba07ac8f7f4df34cda85f1

BAYER, Immanuel, Philip GROTH, Sebastian SCHNECKENER, 2013. Prediction errors in learning drug response from gene expression data : influence of labeling, sample size, and machine learning algorithm. In: PLoS ONE. 8(7), pp. e70294. eISSN 1932-6203. Available under: doi: 10.1371/journal.pone.0070294

@article{Bayer2013Predi-26478, title={Prediction errors in learning drug response from gene expression data : influence of labeling, sample size, and machine learning algorithm}, year={2013}, doi={10.1371/journal.pone.0070294}, number={7}, volume={8}, journal={PLoS ONE}, author={Bayer, Immanuel and Groth, Philip and Schneckener, Sebastian}, note={Article Number: e70294} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/26478"> <dcterms:rights rdf:resource="http://nbn-resolving.org/urn:nbn:de:bsz:352-20140905103605204-4002607-1"/> <dcterms:abstract xml:lang="eng">Model-based prediction is dependent on many choices ranging from the sample collection and prediction endpoint to the choice of algorithm and its parameters. Here we studied the effects of such choices, exemplified by predicting sensitivity (as IC50) of cancer cell lines towards a variety of compounds. For this, we used three independent sample collections and applied several machine learning algorithms for predicting a variety of endpoints for drug response. We compared all possible models for combinations of sample collections, algorithm, drug, and labeling to an identically generated null model. The predictability of treatment effects varies among compounds, i.e. response could be predicted for some but not for all. The choice of sample collection plays a major role towards lowering the prediction error, as does sample size. However, we found that no algorithm was able to consistently outperform the other and there was no significant difference between regression and two- or three class predictors in this experimental setting. These results indicate that response-modeling projects should direct efforts mainly towards sample collection and data quality, rather than method adjustment.</dcterms:abstract> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/26478"/> <dc:language>eng</dc:language> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/26478/2/Bayer_264785.pdf"/> <dcterms:bibliographicCitation>PLoS ONE ; 8 (2013), 7. - e70294</dcterms:bibliographicCitation> <dc:rights>deposit-license</dc:rights> <dc:contributor>Groth, Philip</dc:contributor> <dc:contributor>Schneckener, Sebastian</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-19T12:01:43Z</dc:date> <dc:creator>Bayer, Immanuel</dc:creator> <dc:creator>Schneckener, Sebastian</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-19T12:01:43Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2013</dcterms:issued> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/26478/2/Bayer_264785.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:contributor>Bayer, Immanuel</dc:contributor> <dcterms:title>Prediction errors in learning drug response from gene expression data : influence of labeling, sample size, and machine learning algorithm</dcterms:title> <dc:creator>Groth, Philip</dc:creator> </rdf:Description> </rdf:RDF>

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto