Quillen property for real algebraic varieties

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

PUTINAR, Mihai, Claus SCHEIDERER, 2013. Quillen property for real algebraic varieties

@unpublished{Putinar2013Quill-26407, title={Quillen property for real algebraic varieties}, year={2013}, author={Putinar, Mihai and Scheiderer, Claus} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/26407"> <dcterms:issued>2013</dcterms:issued> <dcterms:title>Quillen property for real algebraic varieties</dcterms:title> <dcterms:abstract xml:lang="eng">Let I be a conjugation-invariant ideal in the complex polynomial ring with variables z_1,...,z_n and their conjugates. The ideal I has the Quillen property if every real valued, strictly positive polynomial on the real zero set of I in C^n is a sum of hermitian squares modulo I. We first relate the Quillen property to the archimedean property from real algebra. Using hereditary calculus, we then quantize and show that the Quillen property implies the subnormality of commuting tuples of Hilbert space operators satisfying the identities in I. In the finite rank case we give a complete geometric characterization of when the identities in I imply normality for a commuting tuple of matrices. This geometric interpretation provides simple means to refute Quillen's property of an ideal. We also generalize these notions and results from real algebraic sets to semi-algebraic sets in C^n.</dcterms:abstract> <dcterms:rights rdf:resource="https://kops.uni-konstanz.de/page/termsofuse"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/26407"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:contributor>Putinar, Mihai</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-24T10:28:26Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:creator>Putinar, Mihai</dc:creator> <dc:contributor>Scheiderer, Claus</dc:contributor> <dc:creator>Scheiderer, Claus</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-24T10:28:26Z</dc:date> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


Browse

My Account