A note on Schanuel's conjectures for exponential logarithmic power series fields

Zitieren

Dateien zu dieser Ressource

Dateien Größe Format Anzeige

Zu diesem Dokument gibt es keine Dateien.

KUHLMANN, Salma, Matusinski MICKAËL, Ahuva C. SHKOP, 2013. A note on Schanuel's conjectures for exponential logarithmic power series fields. In: Archiv der Mathematik. 100(5), pp. 431-436. ISSN 0003-889X. eISSN 1420-8938

@article{Kuhlmann2013Schan-26399, title={A note on Schanuel's conjectures for exponential logarithmic power series fields}, year={2013}, doi={10.1007/s00013-013-0520-5}, number={5}, volume={100}, issn={0003-889X}, journal={Archiv der Mathematik}, pages={431--436}, author={Kuhlmann, Salma and Mickaël, Matusinski and Shkop, Ahuva C.} }

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/26399"> <dc:creator>Mickaël, Matusinski</dc:creator> <dc:contributor>Mickaël, Matusinski</dc:contributor> <dcterms:bibliographicCitation>Archiv der Mathematik ; 100 (2013), 5. - S. 431-436</dcterms:bibliographicCitation> <dc:contributor>Kuhlmann, Salma</dc:contributor> <dc:contributor>Shkop, Ahuva C.</dc:contributor> <dc:creator>Shkop, Ahuva C.</dc:creator> <dcterms:rights rdf:resource="http://nbn-resolving.org/urn:nbn:de:bsz:352-20140905103605204-4002607-1"/> <dc:language>eng</dc:language> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/26399"/> <dc:rights>deposit-license</dc:rights> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-18T13:58:32Z</dcterms:available> <dcterms:abstract xml:lang="eng">In Ax (Ann. Math. 93(2):252–268, 1971), J. Ax proved a transcendency theorem for certain differential fields of characteristic zero : the differential counterpart of the still open Schanuel conjecture about the exponential function over C (Lang, Introduction to transcendental numbers, 1966). In this article, we derive from Ax's theorem transcendency results in the context of differential valued exponential fields. In particular, we obtain results for exponential Hardy fields, Logarithmic-Exponential power series fields, and Exponential-Logarithmic power series fields.</dcterms:abstract> <dcterms:issued>2013</dcterms:issued> <dcterms:title>A note on Schanuel's conjectures for exponential logarithmic power series fields</dcterms:title> <dc:creator>Kuhlmann, Salma</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-18T13:58:32Z</dc:date> </rdf:Description> </rdf:RDF>

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto