BANKSAFE : Visual analytics for big data in large-scale computer networks

Lade...
Vorschaubild
Dateien
Fischer_262253.pdf
Fischer_262253.pdfGröße: 4.02 MBDownloads: 828
Datum
2015
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Information Visualization. 2015, 14(1), pp. 51-61. ISSN 1473-8716. eISSN 1473-8724. Available under: doi: 10.1177/1473871613488572
Zusammenfassung

The enormous growth of data in the last decades led to a wide variety of different database technologies. Nowadays, we are capable of storing vast amounts of structured and unstructured data. To address the challenge of exploring and making sense out of big data using visual analytics, the tight integration of such backend services is needed. In this article, we introduce BANKSAFE, which was built for the VAST Challenge 2012 and won the outstanding comprehensive submission award. BANKSAFE is based on modern database technologies and is capable of visually analyzing vast amounts of monitoring data and security-related datasets of large-scale computer networks. To better describe and demonstrate the visualizations, we utilize the Visual Analytics Science and Technology (VAST) Challenge 2012 as case study. Additionally, we discuss lessons learned during the design and development of BANKSAFE, which are also applicable to other visual analytics applications for big data.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690FISCHER, Fabian, Johannes FUCHS, Florian MANSMANN, Daniel A. KEIM, 2015. BANKSAFE : Visual analytics for big data in large-scale computer networks. In: Information Visualization. 2015, 14(1), pp. 51-61. ISSN 1473-8716. eISSN 1473-8724. Available under: doi: 10.1177/1473871613488572
BibTex
@article{Fischer2015BANKS-26225,
  year={2015},
  doi={10.1177/1473871613488572},
  title={BANKSAFE : Visual analytics for big data in large-scale computer networks},
  number={1},
  volume={14},
  issn={1473-8716},
  journal={Information Visualization},
  pages={51--61},
  author={Fischer, Fabian and Fuchs, Johannes and Mansmann, Florian and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/26225">
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Fuchs, Johannes</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-04T14:34:58Z</dcterms:available>
    <dc:contributor>Fuchs, Johannes</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Fischer, Fabian</dc:contributor>
    <dc:contributor>Mansmann, Florian</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-04T14:34:58Z</dc:date>
    <dcterms:issued>2015</dcterms:issued>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Mansmann, Florian</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/26225/2/Fischer_262253.pdf"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/26225/2/Fischer_262253.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Fischer, Fabian</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/26225"/>
    <dcterms:abstract xml:lang="eng">The enormous growth of data in the last decades led to a wide variety of different database technologies. Nowadays, we are capable of storing vast amounts of structured and unstructured data. To address the challenge of exploring and making sense out of big data using visual analytics, the tight integration of such backend services is needed. In this article, we introduce BANKSAFE, which was built for the VAST Challenge 2012 and won the outstanding comprehensive submission award. BANKSAFE is based on modern database technologies and is capable of visually analyzing vast amounts of monitoring data and security-related datasets of large-scale computer networks. To better describe and demonstrate the visualizations, we utilize the Visual Analytics Science and Technology (VAST) Challenge 2012 as case study. Additionally, we discuss lessons learned during the design and development of BANKSAFE, which are also applicable to other visual analytics applications for big data.</dcterms:abstract>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:title>BANKSAFE : Visual analytics for big data in large-scale computer networks</dcterms:title>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen