Conditional Independence in Dynamic Networks

Thumbnail Image
Date
2013
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published in
Journal of Mathematical Psychology ; 57 (2013), 6. - pp. 275-283. - ISSN 0022-2496. - eISSN 1096-0880
Abstract
Given a longitudinal network observed at time points t1<⋯
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690LERNER, Jürgen, Natalie INDLEKOFER, Bobo NICK, Ulrik BRANDES, 2013. Conditional Independence in Dynamic Networks. In: Journal of Mathematical Psychology. 57(6), pp. 275-283. ISSN 0022-2496. eISSN 1096-0880. Available under: doi: 10.1016/j.jmp.2012.03.002
BibTex
@article{Lerner2013Condi-25992,
  year={2013},
  doi={10.1016/j.jmp.2012.03.002},
  title={Conditional Independence in Dynamic Networks},
  number={6},
  volume={57},
  issn={0022-2496},
  journal={Journal of Mathematical Psychology},
  pages={275--283},
  author={Lerner, Jürgen and Indlekofer, Natalie and Nick, Bobo and Brandes, Ulrik}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/25992">
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Brandes, Ulrik</dc:contributor>
    <dc:contributor>Lerner, Jürgen</dc:contributor>
    <dc:creator>Indlekofer, Natalie</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-01-29T08:19:07Z</dc:date>
    <dc:creator>Brandes, Ulrik</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:title>Conditional Independence in Dynamic Networks</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-01-29T08:19:07Z</dcterms:available>
    <dc:contributor>Nick, Bobo</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/25992/2/Lerner_259920.pdf"/>
    <dc:language>eng</dc:language>
    <dcterms:bibliographicCitation>Journal of Mathematical Psychology ; 57 (2013), 6. - S. 275-283</dcterms:bibliographicCitation>
    <dcterms:issued>2013</dcterms:issued>
    <dcterms:abstract xml:lang="eng">Given a longitudinal network observed at time points t1&lt;⋯&lt;tT, tie changes that happen in the interval (th,th+1) typically depend on the networks at t1,…,th. In this article we deal with the question whether changes within one interval mutually depend on each other or whether they are conditionally independent, given the previously observed networks. Answering this question for given data is of high practical relevance since, if the conditional independence assumption is valid, network dynamics can be modeled with simple and computationally efficient statistical techniques for independent observations. Consequently, we propose a framework to systematically compare conditional independence models with more general models that are specifically designed for social network data. Our results suggest that conditional independence models are inappropriate as a general model for network evolution and can lead to distorted substantive findings on structural network effects, such as transitivity. On the other hand, the conditional independence assumption becomes less severe when inter-observation times are relatively short.</dcterms:abstract>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/25992"/>
    <dc:creator>Lerner, Jürgen</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/25992/2/Lerner_259920.pdf"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Indlekofer, Natalie</dc:contributor>
    <dc:creator>Nick, Bobo</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed