KOPS - Das Institutionelle Repositorium der Universität Konstanz

Relationship Between Backward Stochastic Differential Equations and Stochastic Controls : A Linear-Quadratic Approach

Relationship Between Backward Stochastic Differential Equations and Stochastic Controls : A Linear-Quadratic Approach

Zitieren

Dateien zu dieser Ressource

Dateien Größe Format Anzeige

Zu diesem Dokument gibt es keine Dateien.

KOHLMANN, Michael, Xun Yu ZHOU, 2000. Relationship Between Backward Stochastic Differential Equations and Stochastic Controls : A Linear-Quadratic Approach. In: SIAM Journal on Control and Optimization. 38(5), pp. 1392-1407. ISSN 0363-0129. eISSN 1095-7138

@article{Kohlmann2000Relat-25845, title={Relationship Between Backward Stochastic Differential Equations and Stochastic Controls : A Linear-Quadratic Approach}, year={2000}, doi={10.1137/S036301299834973X}, number={5}, volume={38}, issn={0363-0129}, journal={SIAM Journal on Control and Optimization}, pages={1392--1407}, author={Kohlmann, Michael and Zhou, Xun Yu} }

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/25845"> <dc:rights>deposit-license</dc:rights> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">It is well known that backward stochastic differential equations (BSDEs) stem from the study on the Pontryagin type maximum principle for optimal stochastic controls. A solution of a BSDE hits a given terminal value (which is a random variable) by virtue of an it additional martingale term and an indefinite initial state. This paper attempts to explore the relationship between BSDEs and stochastic controls by interpreting BSDEs as some stochastic optimal control problems. More specifically, associated with a BSDE, a new stochastic control problem is introduced with the same dynamics but a definite given initial state. The martingale term in the original BSDE is regarded as the control, and the objective is to minimize the second moment of the difference between the terminal state and the terminal value given in the BSDE. This problem is solved in a closed form by the stochastic linear-quadratic (LQ) theory developed recently. The general result is then applied to the Black--Scholes model, where an optimal mean-variance hedging portfolio is obtained explicitly in terms of the option price. Finally, a modified model is investigated, where the difference between the state and the expectation of the given terminal value at any time is taken into account.</dcterms:abstract> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/25845"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-01-16T08:35:40Z</dcterms:available> <dc:creator>Kohlmann, Michael</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-01-16T08:35:40Z</dc:date> <dcterms:rights rdf:resource="http://nbn-resolving.org/urn:nbn:de:bsz:352-20140905103605204-4002607-1"/> <dc:creator>Zhou, Xun Yu</dc:creator> <dcterms:title>Relationship Between Backward Stochastic Differential Equations and Stochastic Controls : A Linear-Quadratic Approach</dcterms:title> <dcterms:bibliographicCitation>SIAM journal on control and optimization ; 38 (2000), 5. - S. 1392-1407</dcterms:bibliographicCitation> <dc:contributor>Zhou, Xun Yu</dc:contributor> <dc:contributor>Kohlmann, Michael</dc:contributor> <dcterms:issued>2000</dcterms:issued> </rdf:Description> </rdf:RDF>

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto