Mining Rare Associations between Biological Ontologies

Lade...
Vorschaubild
Dateien
Benites_257600.pdf
Benites_257600.pdfGröße: 428.03 KBDownloads: 221
Datum
2014
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
EU-Projektnummer
DFG-Projektnummer
Forschungsförderung
Projekt
DAMIART
Open Access-Veröffentlichung
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
PLoS ONE. 2014, 9(1), e84475. eISSN 1932-6203. Available under: doi: 10.1371/journal.pone.0084475
Zusammenfassung

The constantly increasing volume and complexity of available biological data requires new methods for their management and analysis. An important challenge is the integration of information from different sources in order to discover possible hidden relations between already known data. In this paper we introduce a data mining approach which relates biological ontologies by mining cross and intra-ontology pairwise generalized association rules. Its advantage is sensitivity to rare associations, for these are important for biologists. We propose a new class of interestingness measures designed for hierarchically organized rules. These measures allow one to select the most important rules and to take into account rare cases. They favor rules with an actual interestingness value that exceeds the expected value. The latter is calculated taking into account the parent rule. We demonstrate this approach by applying it to the analysis of data from Gene Ontology and GPCR databases. Our objective is to discover interesting relations between two different ontologies or parts of a single ontology. The association rules that are thus discovered can provide the user with new knowledge about underlying biological processes or help improve annotation consistency. The obtained results show that produced rules represent meaningful and quite reliable associations.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690BENITES, Fernando, Svenja SIMON, Elena SAPOZHNIKOVA, 2014. Mining Rare Associations between Biological Ontologies. In: PLoS ONE. 2014, 9(1), e84475. eISSN 1932-6203. Available under: doi: 10.1371/journal.pone.0084475
BibTex
@article{Benites2014Minin-25760,
  year={2014},
  doi={10.1371/journal.pone.0084475},
  title={Mining Rare Associations between Biological Ontologies},
  number={1},
  volume={9},
  journal={PLoS ONE},
  author={Benites, Fernando and Simon, Svenja and Sapozhnikova, Elena},
  note={Article Number: e84475}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/25760">
    <dc:contributor>Sapozhnikova, Elena</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dcterms:abstract xml:lang="eng">The constantly increasing volume and complexity of available biological data requires new methods for their management and analysis. An important challenge is the integration of information from different sources in order to discover possible hidden relations between already known data. In this paper we introduce a data mining approach which relates biological ontologies by mining cross and intra-ontology pairwise generalized association rules. Its advantage is sensitivity to rare associations, for these are important for biologists. We propose a new class of interestingness measures designed for hierarchically organized rules. These measures allow one to select the most important rules and to take into account rare cases. They favor rules with an actual interestingness value that exceeds the expected value. The latter is calculated taking into account the parent rule. We demonstrate this approach by applying it to the analysis of data from Gene Ontology and GPCR databases. Our objective is to discover interesting relations between two different ontologies or parts of a single ontology. The association rules that are thus discovered can provide the user with new knowledge about underlying biological processes or help improve annotation consistency. The obtained results show that produced rules represent meaningful and quite reliable associations.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-01-13T11:07:02Z</dcterms:available>
    <dc:creator>Benites, Fernando</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-01-13T11:07:02Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dcterms:bibliographicCitation>PLoS ONE ; 9 (2014), 1. - e84475</dcterms:bibliographicCitation>
    <dc:language>eng</dc:language>
    <dc:contributor>Simon, Svenja</dc:contributor>
    <dcterms:issued>2014</dcterms:issued>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/25760"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/25760/1/Benites_257600.pdf"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/25760/1/Benites_257600.pdf"/>
    <dc:creator>Sapozhnikova, Elena</dc:creator>
    <dcterms:title>Mining Rare Associations between Biological Ontologies</dcterms:title>
    <dc:contributor>Benites, Fernando</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Simon, Svenja</dc:creator>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet