Generalized Association Rules for Connecting Biological Ontologies
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
EU-Projektnummer
DFG-Projektnummer
Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The constantly increasing volume and complexity of available biological data requires new methods for Managing and analyzing them. An important challenge is the integration of information from different sources in order to discover possible hidden relations between already known data. In this paper we introduce a data mining approach which relates biological ontologies by mining generalized association rules connecting their categories. To select only the most important rules, we propose a new interestingness measure especially well-suited for hierarchically organized rules. To demonstrate this approach, we applied it to the bioinformatics domain and, more specifically, to the analysis of data from Gene Ontology, Cell type Ontology and GPCR databases. In this way found association rules connecting two biological ontologies can provide the user with new knowledge about underlying biological processes. The preliminary results show that produced rules represent meaningful and quite reliable associations among the ontologies and help infer new knowledge.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BENITES, Fernando, Elena SAPOZHNIKOVA, 2013. Generalized Association Rules for Connecting Biological Ontologies. BIOINFORMATICS. Barcelona, Spain, 11. Feb. 2013 - 14. Feb. 2013. In: FERNANDES, Pedro, ed. and others. BIOINFORMATICS 2013 : proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms. [S.l.]: SciTePress, 2013, pp. 230-237. ISBN 978-989-8565-35-8BibTex
@inproceedings{Benites2013Gener-25759, year={2013}, title={Generalized Association Rules for Connecting Biological Ontologies}, isbn={978-989-8565-35-8}, publisher={SciTePress}, address={[S.l.]}, booktitle={BIOINFORMATICS 2013 : proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms}, pages={230--237}, editor={Fernandes, Pedro}, author={Benites, Fernando and Sapozhnikova, Elena} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/25759"> <dc:creator>Sapozhnikova, Elena</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-01-13T14:31:13Z</dc:date> <dc:contributor>Benites, Fernando</dc:contributor> <dcterms:abstract xml:lang="eng">The constantly increasing volume and complexity of available biological data requires new methods for Managing and analyzing them. An important challenge is the integration of information from different sources in order to discover possible hidden relations between already known data. In this paper we introduce a data mining approach which relates biological ontologies by mining generalized association rules connecting their categories. To select only the most important rules, we propose a new interestingness measure especially well-suited for hierarchically organized rules. To demonstrate this approach, we applied it to the bioinformatics domain and, more specifically, to the analysis of data from Gene Ontology, Cell type Ontology and GPCR databases. In this way found association rules connecting two biological ontologies can provide the user with new knowledge about underlying biological processes. The preliminary results show that produced rules represent meaningful and quite reliable associations among the ontologies and help infer new knowledge.</dcterms:abstract> <dc:language>eng</dc:language> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/25759"/> <dcterms:issued>2013</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-01-13T14:31:13Z</dcterms:available> <dcterms:title>Generalized Association Rules for Connecting Biological Ontologies</dcterms:title> <dcterms:bibliographicCitation>BIOINFORMATICS 2013 : proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms ; Barcelona, Spain, 11 - 14 February 2013 / ed. by Pedro Fernandes ... - [S.l.] : SciTePress, 2013. - S. 230-237. - ISBN 978-989-8565-35-8</dcterms:bibliographicCitation> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:rights>terms-of-use</dc:rights> <dc:creator>Benites, Fernando</dc:creator> <dc:contributor>Sapozhnikova, Elena</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> </rdf:Description> </rdf:RDF>