Generalized Association Rules for Connecting Biological Ontologies

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

BENITES, Fernando, Elena SAPOZHNIKOVA, 2013. Generalized Association Rules for Connecting Biological Ontologies. BIOINFORMATICS. Barcelona, Spain, Feb 11, 2013 - Feb 14, 2013. In: FERNANDES, Pedro, ed. and others. BIOINFORMATICS 2013 : proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms. [S.l.]:SciTePress, pp. 230-237. ISBN 978-989-8565-35-8

@inproceedings{Benites2013Gener-25759, title={Generalized Association Rules for Connecting Biological Ontologies}, year={2013}, isbn={978-989-8565-35-8}, address={[S.l.]}, publisher={SciTePress}, booktitle={BIOINFORMATICS 2013 : proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms}, pages={230--237}, editor={Fernandes, Pedro}, author={Benites, Fernando and Sapozhnikova, Elena} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/25759"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:language>eng</dc:language> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/25759"/> <dcterms:rights rdf:resource="https://kops.uni-konstanz.de/page/termsofuse"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-01-13T14:31:13Z</dcterms:available> <dc:creator>Benites, Fernando</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-01-13T14:31:13Z</dc:date> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:contributor>Sapozhnikova, Elena</dc:contributor> <dcterms:bibliographicCitation>BIOINFORMATICS 2013 : proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms ; Barcelona, Spain, 11 - 14 February 2013 / ed. by Pedro Fernandes ... - [S.l.] : SciTePress, 2013. - S. 230-237. - ISBN 978-989-8565-35-8</dcterms:bibliographicCitation> <dc:creator>Sapozhnikova, Elena</dc:creator> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Benites, Fernando</dc:contributor> <dcterms:issued>2013</dcterms:issued> <dcterms:title>Generalized Association Rules for Connecting Biological Ontologies</dcterms:title> <dcterms:abstract xml:lang="eng">The constantly increasing volume and complexity of available biological data requires new methods for Managing and analyzing them. An important challenge is the integration of information from different sources in order to discover possible hidden relations between already known data. In this paper we introduce a data mining approach which relates biological ontologies by mining generalized association rules connecting their categories. To select only the most important rules, we propose a new interestingness measure especially well-suited for hierarchically organized rules. To demonstrate this approach, we applied it to the bioinformatics domain and, more specifically, to the analysis of data from Gene Ontology, Cell type Ontology and GPCR databases. In this way found association rules connecting two biological ontologies can provide the user with new knowledge about underlying biological processes. The preliminary results show that produced rules represent meaningful and quite reliable associations among the ontologies and help infer new knowledge.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


Browse

My Account