Type of Publication: | Journal article |
Author: | Kotschote, Matthias |
Year of publication: | 2012 |
Published in: | Mathematical Methods in the Applied Sciences ; 35 (2012), 4. - pp. 384-397. - ISSN 0170-4214. - eISSN 1099-1476 |
DOI (citable link): | https://dx.doi.org/10.1002/mma.1565 |
Summary: |
We prove existence and uniqueness of strong solutions to a quasilinear parabolic-elliptic system modelling an ionic exchanger. This chemical system consists of three phases connected with nonlinear boundary conditions. The most interesting difficulty of our problem manifests in the nonlinear transmission condition, as almost all quantities are non-linearly involved in this boundary equation. Our approach is based on the contraction mapping principle, where maximal Lp-regularity of the associated linear problem is used to obtain a fixed point equation of the starting problem.
|
Subject (DDC): | 510 Mathematics |
Bibliography of Konstanz: | Yes |
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |
KOTSCHOTE, Matthias, 2012. Strong well-posedness of a three phase problem with nonlinear transmission condition. In: Mathematical Methods in the Applied Sciences. 35(4), pp. 384-397. ISSN 0170-4214. eISSN 1099-1476. Available under: doi: 10.1002/mma.1565
@article{Kotschote2012Stron-25562, title={Strong well-posedness of a three phase problem with nonlinear transmission condition}, year={2012}, doi={10.1002/mma.1565}, number={4}, volume={35}, issn={0170-4214}, journal={Mathematical Methods in the Applied Sciences}, pages={384--397}, author={Kotschote, Matthias} }
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/25562"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:creator>Kotschote, Matthias</dc:creator> <dcterms:title>Strong well-posedness of a three phase problem with nonlinear transmission condition</dcterms:title> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-12-20T10:16:01Z</dcterms:available> <dc:rights>terms-of-use</dc:rights> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Kotschote, Matthias</dc:contributor> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/25562"/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-12-20T10:16:01Z</dc:date> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">We prove existence and uniqueness of strong solutions to a quasilinear parabolic-elliptic system modelling an ionic exchanger. This chemical system consists of three phases connected with nonlinear boundary conditions. The most interesting difficulty of our problem manifests in the nonlinear transmission condition, as almost all quantities are non-linearly involved in this boundary equation. Our approach is based on the contraction mapping principle, where maximal Lp-regularity of the associated linear problem is used to obtain a fixed point equation of the starting problem.</dcterms:abstract> <dcterms:bibliographicCitation>Mathematical Methods in the Applied Sciences ; 35 (2012), 4. - S. 384-397</dcterms:bibliographicCitation> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2012</dcterms:issued> </rdf:Description> </rdf:RDF>