Kinetic Schemes in the Case of Low Mach Numbers


Dateien zu dieser Ressource

Dateien Größe Format Anzeige

Zu diesem Dokument gibt es keine Dateien.

JUNK, Michael, 1999. Kinetic Schemes in the Case of Low Mach Numbers. In: Journal of Computational Physics. 151(2), pp. 947-968. ISSN 0021-9991. eISSN 1090-2716. Available under: doi: 10.1006/jcph.1999.6228

@article{Junk1999Kinet-25477, title={Kinetic Schemes in the Case of Low Mach Numbers}, year={1999}, doi={10.1006/jcph.1999.6228}, number={2}, volume={151}, issn={0021-9991}, journal={Journal of Computational Physics}, pages={947--968}, author={Junk, Michael} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:bibliographicCitation>Journal of Computational Physics ; 151 (1999), 2. - S. 947–968</dcterms:bibliographicCitation> <dspace:isPartOfCollection rdf:resource=""/> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource=""/> <bibo:uri rdf:resource=""/> <dc:rights>terms-of-use</dc:rights> <dc:date rdf:datatype="">2013-12-18T07:33:15Z</dc:date> <dc:creator>Junk, Michael</dc:creator> <dcterms:available rdf:datatype="">2013-12-18T07:33:15Z</dcterms:available> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:title>Kinetic Schemes in the Case of Low Mach Numbers</dcterms:title> <dc:contributor>Junk, Michael</dc:contributor> <dcterms:issued>1999</dcterms:issued> <dcterms:abstract xml:lang="eng">Originally, kinetic schemes have been used as numerical methods to solve the system of compressible Euler equations in gas dynamics. The main idea in the approach is to construct the numerical flux function based on a microscopical description of the gas. In this article the schemes are investigated in the case of isentropic Euler equations and low Mach numbers. Expanding the microscopical velocity distribution naturally leads to new kinetic schemes with strong resemblance to lattice Boltzmann methods. By adjusting the parameters of the kinetic scheme the numerical viscosity can be used to reproduce a given physical viscosity. In this way, a finite difference solver for the incompressible Navier–Stokes equation is obtained. Its close relation to the lattice Boltzmann approach is highlighted.</dcterms:abstract> <dcterms:rights rdf:resource=""/> </rdf:Description> </rdf:RDF>

Das Dokument erscheint in:

KOPS Suche


Mein Benutzerkonto