Maximum Entropy Moment Problems and Extended Euler Equations

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

JUNK, Michael, 2004. Maximum Entropy Moment Problems and Extended Euler Equations. In: ABDALLAH, Naoufel Ben, ed., Irene M. GAMBA, ed., Christian RINGHOFER, ed., Anton ARNOLD, ed., Robert T. GLASSEY, ed., Pierre DEGOND, ed., C. David LEVERMORE, ed.. Transport in Transition Regimes. New York, NY:Springer New York, pp. 189-198. ISBN 978-1-4612-6507-8. Available under: doi: 10.1007/978-1-4613-0017-5_11

@incollection{Junk2004Maxim-25409, title={Maximum Entropy Moment Problems and Extended Euler Equations}, year={2004}, doi={10.1007/978-1-4613-0017-5_11}, number={135}, isbn={978-1-4612-6507-8}, address={New York, NY}, publisher={Springer New York}, series={The IMA Volumes in Mathematics and its Applications}, booktitle={Transport in Transition Regimes}, pages={189--198}, editor={Abdallah, Naoufel Ben and Gamba, Irene M. and Ringhofer, Christian and Arnold, Anton and Glassey, Robert T. and Degond, Pierre and Levermore, C. David}, author={Junk, Michael} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <dcterms:rights rdf:resource=""/> <dcterms:available rdf:datatype="">2013-12-19T17:46:13Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource=""/> <dcterms:issued>2004</dcterms:issued> <dc:rights>terms-of-use</dc:rights> <dc:language>eng</dc:language> <dcterms:bibliographicCitation>Tansport in Transition Regimes / Naoufel Ben Abdallah ... (eds.). - New York, NY : Springer, 2004. - S. 189-198. - (The IMA Volumes in Mathematics and its Applications ; 135). - ISBN 978-1-4612-6507-8</dcterms:bibliographicCitation> <dc:creator>Junk, Michael</dc:creator> <dspace:isPartOfCollection rdf:resource=""/> <dc:contributor>Junk, Michael</dc:contributor> <dc:date rdf:datatype="">2013-12-19T17:46:13Z</dc:date> <dcterms:abstract xml:lang="eng">The reduction of kinetic equations to moment systems leads to a closure problem because material laws have to be expressed in terms of the moment variables. In the maximum entropy approach, the closure problem is solved by assuming that the kinetic distribution function maximizes the entropy under some constraints. For the case of Boltzmann equation, the resulting hyperbolic moment systems are investigated. It turns out that the systems generally have non-convex domains of definition. Moreover, the equilibrium state is typically located on the boundary of the domain of definition where the fluxes are singular. This leads to the strange property that arbitrarily close to equilibrium the characteristic velocities of the moment system can be arbitrarily large.</dcterms:abstract> <dcterms:title>Maximum Entropy Moment Problems and Extended Euler Equations</dcterms:title> <dcterms:isPartOf rdf:resource=""/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


My Account