Maximum Entropy Moment Problems and Extended Euler Equations


Dateien zu dieser Ressource

Dateien Größe Format Anzeige

Zu diesem Dokument gibt es keine Dateien.

JUNK, Michael, 2004. Maximum Entropy Moment Problems and Extended Euler Equations. In: ABDALLAH, Naoufel Ben, ed., Irene M. GAMBA, ed., Christian RINGHOFER, ed., Anton ARNOLD, ed., Robert T. GLASSEY, ed., Pierre DEGOND, ed., C. David LEVERMORE, ed.. Transport in Transition Regimes. New York, NY:Springer New York, pp. 189-198. ISBN 978-1-4612-6507-8

@incollection{Junk2004Maxim-25409, title={Maximum Entropy Moment Problems and Extended Euler Equations}, year={2004}, doi={10.1007/978-1-4613-0017-5_11}, number={135}, isbn={978-1-4612-6507-8}, address={New York, NY}, publisher={Springer New York}, series={The IMA Volumes in Mathematics and its Applications}, booktitle={Transport in Transition Regimes}, pages={189--198}, editor={Abdallah, Naoufel Ben and Gamba, Irene M. and Ringhofer, Christian and Arnold, Anton and Glassey, Robert T. and Degond, Pierre and Levermore, C. David}, author={Junk, Michael} }

<rdf:RDF xmlns:rdf="" xmlns:bibo="" xmlns:dc="" xmlns:dcterms="" xmlns:xsd="" > <rdf:Description rdf:about=""> <dcterms:available rdf:datatype="">2013-12-19T17:46:13Z</dcterms:available> <bibo:uri rdf:resource=""/> <dcterms:issued>2004</dcterms:issued> <dc:language>eng</dc:language> <dcterms:bibliographicCitation>Tansport in Transition Regimes / Naoufel Ben Abdallah ... (eds.). - New York, NY : Springer, 2004. - S. 189-198. - (The IMA Volumes in Mathematics and its Applications ; 135). - ISBN 978-1-4612-6507-8</dcterms:bibliographicCitation> <dc:creator>Junk, Michael</dc:creator> <dc:contributor>Junk, Michael</dc:contributor> <dc:date rdf:datatype="">2013-12-19T17:46:13Z</dc:date> <dc:rights>deposit-license</dc:rights> <dcterms:title>Maximum Entropy Moment Problems and Extended Euler Equations</dcterms:title> <dcterms:rights rdf:resource=""/> <dcterms:abstract xml:lang="eng">The reduction of kinetic equations to moment systems leads to a closure problem because material laws have to be expressed in terms of the moment variables. In the maximum entropy approach, the closure problem is solved by assuming that the kinetic distribution function maximizes the entropy under some constraints. For the case of Boltzmann equation, the resulting hyperbolic moment systems are investigated. It turns out that the systems generally have non-convex domains of definition. Moreover, the equilibrium state is typically located on the boundary of the domain of definition where the fluxes are singular. This leads to the strange property that arbitrarily close to equilibrium the characteristic velocities of the moment system can be arbitrarily large.</dcterms:abstract> </rdf:Description> </rdf:RDF>

Das Dokument erscheint in:

KOPS Suche


Mein Benutzerkonto