Meshless Methods for Conservation Laws


Dateien zu dieser Ressource

Dateien Größe Format Anzeige

Zu diesem Dokument gibt es keine Dateien.

HIETEL, Dietmar, Michael JUNK, Jörg KUHNERT, Sudarshan TIWARI, 2005. Meshless Methods for Conservation Laws. In: WARNECKE, Gerald, ed.. Analysis and Numerics for Conservation Laws. Springer Berlin Heidelberg, pp. 339-362. ISBN 978-3-540-24834-7. Available under: doi: 10.1007/3-540-27907-5_15

@incollection{Hietel2005Meshl-25402, title={Meshless Methods for Conservation Laws}, year={2005}, doi={10.1007/3-540-27907-5_15}, isbn={978-3-540-24834-7}, publisher={Springer Berlin Heidelberg}, booktitle={Analysis and Numerics for Conservation Laws}, pages={339--362}, editor={Warnecke, Gerald}, author={Hietel, Dietmar and Junk, Michael and Kuhnert, Jörg and Tiwari, Sudarshan} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <dcterms:rights rdf:resource=""/> <dcterms:title>Meshless Methods for Conservation Laws</dcterms:title> <dc:contributor>Hietel, Dietmar</dc:contributor> <dc:creator>Tiwari, Sudarshan</dc:creator> <dc:date rdf:datatype="">2013-12-11T10:46:42Z</dc:date> <dc:contributor>Tiwari, Sudarshan</dc:contributor> <dcterms:bibliographicCitation>Analysis and Numerics for Conservation Laws : with 18 tables / Gerald Warnecke (ed.). - Berlin [u.a.] : Springer, 2005. - S. 339-362. - ISBN 978-3-540-24834-7</dcterms:bibliographicCitation> <bibo:uri rdf:resource=""/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:creator>Junk, Michael</dc:creator> <dcterms:available rdf:datatype="">2013-12-11T10:46:42Z</dcterms:available> <dc:creator>Hietel, Dietmar</dc:creator> <dcterms:issued>2005</dcterms:issued> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource=""/> <dcterms:abstract xml:lang="eng">In this article, two meshfree methods for the numerical solution of conservation laws are considered. The Finite Volume Particle Method (FVPM) generalizes the Finite Volume approach and the Finite Pointset Method (FPM) is a Finite Difference scheme which can work on unstructured and moving point clouds. Details of the derivation and numerical examples are presented for the case of incompressible, viscous, two-phase flow. In the case of FVPM, our main focus lies on the derivation of stability estimates.</dcterms:abstract> <dc:contributor>Kuhnert, Jörg</dc:contributor> <dc:creator>Kuhnert, Jörg</dc:creator> <dc:contributor>Junk, Michael</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:rights>terms-of-use</dc:rights> <dcterms:isPartOf rdf:resource=""/> </rdf:Description> </rdf:RDF>

Das Dokument erscheint in:

KOPS Suche


Mein Benutzerkonto