Building a Data Warehouse for Twitter Stream Exploration

Lade...
Vorschaubild
Dateien
Rehmann_252327.pdf
Rehmann_252327.pdfGröße: 957.05 KBDownloads: 9285
Datum
2012
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
EU-Projektnummer
DFG-Projektnummer
Angaben zur Forschungsförderung (Freitext)
Projekt
Exploration und Visualisierung großer Informationsmengen
Open Access-Veröffentlichung
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. IEEE, 2012, pp. 1341-1348. ISBN 978-1-4673-2497-7. Available under: doi: 10.1109/ASONAM.2012.230
Zusammenfassung

In the recent year Twitter has evolved into an extremely popular social network and has revolutionized the ways of interacting and exchanging information on the Internet. By making its public stream available through a set of APIs Twitter has triggered a wave of research initiatives aimed at analysis and knowledge discovery from the data about its users and their messaging activities. While most of the projects and tools are tailored towards solving specific tasks, we pursue a goal of providing an application in dependent and universal analytical platform for supporting any kind of analysis and knowledge discovery. We employ the well established data warehousing technology with its underlying multidimensional data model, ETL routine for loading and consolidating data from different sources, OLAP functionality for exploring the data and data mining tools for more sophisticated analysis. In this work we describe the process of transforming the original stream into a set of related multidimensional cubes and demonstrate how the resulting data warehouse can be used for solving a variety of analytical tasks. We expect our proposed approach to be applicable for analyzing the data of other social networks as well.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Twitter, Data mining, Data models, Data Warehouses, OLAP, Social Network
Konferenz
2012 International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2012), 26. Aug. 2012 - 29. Aug. 2012, Istanbul
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690REHMAN, Nafees Ur, Svetlana MANSMANN, Andreas WEILER, Marc H. SCHOLL, 2012. Building a Data Warehouse for Twitter Stream Exploration. 2012 International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2012). Istanbul, 26. Aug. 2012 - 29. Aug. 2012. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. IEEE, 2012, pp. 1341-1348. ISBN 978-1-4673-2497-7. Available under: doi: 10.1109/ASONAM.2012.230
BibTex
@inproceedings{Rehman2012-08Build-25232,
  year={2012},
  doi={10.1109/ASONAM.2012.230},
  title={Building a Data Warehouse for Twitter Stream Exploration},
  isbn={978-1-4673-2497-7},
  publisher={IEEE},
  booktitle={2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining},
  pages={1341--1348},
  author={Rehman, Nafees Ur and Mansmann, Svetlana and Weiler, Andreas and Scholl, Marc H.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/25232">
    <dc:creator>Mansmann, Svetlana</dc:creator>
    <dcterms:issued>2012-08</dcterms:issued>
    <dc:creator>Rehman, Nafees Ur</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/25232/2/Rehmann_252327.pdf"/>
    <dcterms:abstract xml:lang="eng">In the recent year Twitter has evolved into an extremely popular social network and has revolutionized the ways of interacting and exchanging information on the Internet. By making its public stream available through a set of APIs Twitter has triggered a wave of research initiatives aimed at analysis and knowledge discovery from the data about its users and their messaging activities. While most of the projects and tools are tailored towards solving specific tasks, we pursue a goal of providing an application in dependent and universal analytical platform for supporting any kind of analysis and knowledge discovery. We employ the well established data warehousing technology with its underlying multidimensional data model, ETL routine for loading and consolidating data from different sources, OLAP functionality for exploring the data and data mining tools for more sophisticated analysis. In this work we describe the process of transforming the original stream into a set of related multidimensional cubes and demonstrate how the resulting data warehouse can be used for solving a variety of analytical tasks. We expect our proposed approach to be applicable for analyzing the data of other social networks as well.</dcterms:abstract>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-11-22T10:21:02Z</dc:date>
    <dc:contributor>Weiler, Andreas</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/25232/2/Rehmann_252327.pdf"/>
    <dcterms:title>Building a Data Warehouse for Twitter Stream Exploration</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:bibliographicCitation>2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), IEEE Computer Society. - 1 (2012). - S. 1341-1348. - ISBN 978-0-7695-4799-2,   Istanbul, Turkey, August 2012, IEEE Press.</dcterms:bibliographicCitation>
    <dc:language>eng</dc:language>
    <dc:contributor>Scholl, Marc H.</dc:contributor>
    <dc:contributor>Rehman, Nafees Ur</dc:contributor>
    <dc:creator>Scholl, Marc H.</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Mansmann, Svetlana</dc:contributor>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/25232"/>
    <dc:creator>Weiler, Andreas</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-11-22T10:21:02Z</dcterms:available>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen