Link prediction with social vector clocks

Cite This

Files in this item

Checksum: MD5:c5426a2ce5f086928e6be99d22cfb135

LEE, Conrad, Bobo NICK, Ulrik BRANDES, Padraig CUNNINGHAM, 2013. Link prediction with social vector clocks. 19th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD '13. Chicago, Illinois, USA, Aug 11, 2013 - Aug 14, 2013. In: Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD '13. New York, New York, USA:ACM Press, pp. 784-792. ISBN 978-1-4503-2174-7. Available under: doi: 10.1145/2487575.2487615

@inproceedings{Lee2013predi-24821, title={Link prediction with social vector clocks}, year={2013}, doi={10.1145/2487575.2487615}, isbn={978-1-4503-2174-7}, address={New York, New York, USA}, publisher={ACM Press}, booktitle={Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD '13}, pages={784--792}, author={Lee, Conrad and Nick, Bobo and Brandes, Ulrik and Cunningham, Padraig} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <dc:creator>Cunningham, Padraig</dc:creator> <bibo:uri rdf:resource=""/> <dc:creator>Brandes, Ulrik</dc:creator> <dspace:isPartOfCollection rdf:resource=""/> <dspace:isPartOfCollection rdf:resource=""/> <dc:contributor>Lee, Conrad</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:issued>2013</dcterms:issued> <dcterms:isPartOf rdf:resource=""/> <dc:contributor>Nick, Bobo</dc:contributor> <dc:date rdf:datatype="">2013-10-11T09:46:19Z</dc:date> <dcterms:isPartOf rdf:resource=""/> <dspace:hasBitstream rdf:resource=""/> <dc:contributor>Brandes, Ulrik</dc:contributor> <dc:contributor>Cunningham, Padraig</dc:contributor> <dc:rights>terms-of-use</dc:rights> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:hasPart rdf:resource=""/> <dcterms:available rdf:datatype="">2014-08-30T22:25:04Z</dcterms:available> <dcterms:title>Link prediction with social vector clocks</dcterms:title> <dcterms:bibliographicCitation>KDD'13 : The 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining ; Chicago, IL, USA - August 11 - 14, 2013 / Inderjit S. Dhillon ... (eds.). - New York : ACM, 2013. - S. 784-792. - ISBN 978-1-4503-2174-7</dcterms:bibliographicCitation> <dcterms:rights rdf:resource=""/> <dcterms:abstract xml:lang="eng">State-of-the-art link prediction utilizes combinations of complex features derived from network panel data. We here show that computationally less expensive features can achieve the same performance in the common scenario in which the data is available as a sequence of interactions. Our features are based on social vector clocks, an adaptation of the vector-clock concept introduced in distributed computing to social interaction networks. In fact, our experiments suggest that by taking into account the order and spacing of interactions, social vector clocks exploit different aspects of link formation so that their combination with previous approaches yields the most accurate predictor to date.</dcterms:abstract> <dc:language>eng</dc:language> <dc:creator>Lee, Conrad</dc:creator> <dc:creator>Nick, Bobo</dc:creator> </rdf:Description> </rdf:RDF>

Downloads since Oct 1, 2014 (Information about access statistics)

Lee_248217.pdf 302

This item appears in the following Collection(s)

Search KOPS


My Account