KOPS - Das Institutionelle Repositorium der Universität Konstanz

Visual sentiment analysis of customer feedback streams using geo-temporal term associations

Visual sentiment analysis of customer feedback streams using geo-temporal term associations


Dateien zu dieser Ressource

Prüfsumme: MD5:98a1065478b59572270e358ecf454314

HAO, Ming C., Christian ROHRDANTZ, Halldor JANETZKO, Daniel KEIM, Umeshwar DAYAL, Lars Erik HAUG, Meichun HSU, Florian STOFFEL, 2013. Visual sentiment analysis of customer feedback streams using geo-temporal term associations. In: Information Visualization. 12(3-4), pp. 273-290. ISSN 1473-8716. eISSN 1473-8724

@article{Hao2013Visua-24781, title={Visual sentiment analysis of customer feedback streams using geo-temporal term associations}, year={2013}, doi={10.1177/1473871613481691}, number={3-4}, volume={12}, issn={1473-8716}, journal={Information Visualization}, pages={273--290}, author={Hao, Ming C. and Rohrdantz, Christian and Janetzko, Halldor and Keim, Daniel and Dayal, Umeshwar and Haug, Lars Erik and Hsu, Meichun and Stoffel, Florian} }

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/24781"> <dc:contributor>Stoffel, Florian</dc:contributor> <dc:creator>Dayal, Umeshwar</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/24781"/> <dcterms:issued>2013</dcterms:issued> <dc:rights>deposit-license</dc:rights> <dc:contributor>Hsu, Meichun</dc:contributor> <dc:contributor>Janetzko, Halldor</dc:contributor> <dcterms:rights rdf:resource="http://nbn-resolving.org/urn:nbn:de:bsz:352-20140905103605204-4002607-1"/> <dc:creator>Hao, Ming C.</dc:creator> <dcterms:bibliographicCitation>Information Visualization ; 12 (2013), 3-4. - S. 273-290</dcterms:bibliographicCitation> <dc:contributor>Keim, Daniel</dc:contributor> <dc:contributor>Dayal, Umeshwar</dc:contributor> <dc:language>eng</dc:language> <dc:contributor>Hao, Ming C.</dc:contributor> <dc:creator>Janetzko, Halldor</dc:creator> <dcterms:abstract xml:lang="eng">Large manufacturing companies frequently receive thousands of web surveys every day. People share their thoughts regarding a wide range of products, their features, and the service they received. In addition, more than 190 million tweets (small text Web posts) are generated daily. Both survey feedback and tweets are underutilized as a source for understanding customer sentiments. To explore high-volume customer feedback streams, in this article, we introduce four time series visual analysis techniques: (1) feature-based sentiment analysis that extracts, measures, and maps customer feedback; (2) a novel way of determining term associations that identify attributes, verbs, and adjectives frequently occurring together; (3) a self-organizing term association map and a pixel cell–based sentiment calendar to identify co-occurring and influential opinion; and (4) a new geo-based term association technique providing a key term geo map to enable the user to inspect the statistical significance and the sentiment distribution of individual key terms. We have used and evaluated these techniques and combined them into a well-fitted solution for an effective analysis of large customer feedback streams such as web surveys (from product buyers) and Twitter (e.g. from Kung-Fu Panda movie reviewers).</dcterms:abstract> <dc:creator>Haug, Lars Erik</dc:creator> <dcterms:title>Visual sentiment analysis of customer feedback streams using geo-temporal term associations</dcterms:title> <dc:creator>Stoffel, Florian</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-07-30T22:25:07Z</dcterms:available> <dc:creator>Hsu, Meichun</dc:creator> <dc:contributor>Haug, Lars Erik</dc:contributor> <dc:contributor>Rohrdantz, Christian</dc:contributor> <dc:creator>Rohrdantz, Christian</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-10-09T11:15:46Z</dc:date> <dc:creator>Keim, Daniel</dc:creator> </rdf:Description> </rdf:RDF>

Dateiabrufe seit 01.10.2014 (Informationen über die Zugriffsstatistik)

Information Visualization_273 edit.pdf 308

Das Dokument erscheint in:

KOPS Suche


Mein Benutzerkonto