Lp-estimates for a transmission problem of mixed elliptic-parabolic type
Lp-estimates for a transmission problem of mixed elliptic-parabolic type
Date
2013
Authors
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
Konstanzer Schriften in Mathematik; 318
URI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Working Paper/Technical Report
Publication status
Published in
Abstract
We consider the situation when an elliptic problem in a subdomain Ω1 of an n-dimensional bounded domain Ω is coupled via inhomogeneous canonical transmission conditions to a parabolic problem in Ω\Ω1. In particular, we can treat elliptic-parabolic equations in bounded domains with discontinuous coefficients. Using Fourier multiplier techniques, we prove an a priori estimate for strong solutions to the equations in Lp-Sobolev spaces.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Transmission problem,elliptic-parabolic equation,a priori estimates
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
DENK, Robert, Tim SEGER, 2013. Lp-estimates for a transmission problem of mixed elliptic-parabolic typeBibTex
@techreport{Denk2013estim-24165, year={2013}, series={Konstanzer Schriften in Mathematik}, title={L<sup>p</sup>-estimates for a transmission problem of mixed elliptic-parabolic type}, number={318}, author={Denk, Robert and Seger, Tim} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/24165"> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24165/2/Seger_241650.pdf"/> <dc:contributor>Seger, Tim</dc:contributor> <dcterms:abstract xml:lang="eng">We consider the situation when an elliptic problem in a subdomain &Omega;<sub>1</sub> of an n-dimensional bounded domain &Omega; is coupled via inhomogeneous canonical transmission conditions to a parabolic problem in &Omega;\&Omega;<sub>1</sub>. In particular, we can treat elliptic-parabolic equations in bounded domains with discontinuous coefficients. Using Fourier multiplier techniques, we prove an a priori estimate for strong solutions to the equations in L<sup>p</sup>-Sobolev spaces.</dcterms:abstract> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24165/2/Seger_241650.pdf"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/24165"/> <dc:creator>Denk, Robert</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-08-09T08:22:47Z</dc:date> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-08-09T08:22:47Z</dcterms:available> <dc:creator>Seger, Tim</dc:creator> <dcterms:issued>2013</dcterms:issued> <dc:contributor>Denk, Robert</dc:contributor> <dcterms:title>L<sup>p</sup>-estimates for a transmission problem of mixed elliptic-parabolic type</dcterms:title> <dc:rights>terms-of-use</dc:rights> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes