KOPS - Das Institutionelle Repositorium der Universität Konstanz

Adaptive thinning of atmospheric observations in data assimilation with vector quantization and filtering methods

Adaptive thinning of atmospheric observations in data assimilation with vector quantization and filtering methods

Zitieren

Dateien zu dieser Ressource

Prüfsumme: MD5:251fc3287d98d71bb014c56b3c7ddfcd

OCHOTTA, Tilo, Christoph GEBHARDT, Dietmar SAUPE, Werner WERGEN, 2005. Adaptive thinning of atmospheric observations in data assimilation with vector quantization and filtering methods. In: Quarterly Journal of the Royal Meteorological Society. 131(613), pp. 3427-3437. ISSN 0035-9009. eISSN 1477-870X

@article{Ochotta2005Adapt-24078, title={Adaptive thinning of atmospheric observations in data assimilation with vector quantization and filtering methods}, year={2005}, doi={10.1256/qj.05.94}, number={613}, volume={131}, issn={0035-9009}, journal={Quarterly Journal of the Royal Meteorological Society}, pages={3427--3437}, author={Ochotta, Tilo and Gebhardt, Christoph and Saupe, Dietmar and Wergen, Werner} }

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/24078"> <dcterms:issued>2005</dcterms:issued> <dcterms:abstract xml:lang="eng">In data assimilation for numerical weather prediction, measurements of various observation systems are combined with background data to define initial states for the forecasts. Current and future observation systems, in particular satellite instruments, produce large numbers of measurements with high spatial and temporal density. Such datasets significantly increase the computational costs of the assimilation and, moreover, can violate the assumption of spatially independent observation errors. To ameliorate these problems, we propose two greedy thinning algorithms, which reduce the number of assimilated observations while retaining the essential information content of the data. In the first method, the number of points in the output set is increased iteratively. We use a clustering method with a distance metric that combines spatial distance with difference in observation values. In a second scheme, we iteratively estimate the redundancy of the current observation set and remove the most redundant data points. We evaluate the proposed methods with respect to a geometric error measure and compare them with a uniform sampling scheme. We obtain good representations of the original data with thinnings retaining only a small portion of observations. We also evaluate our thinnings of ATOVS satellite data using the assimilation system of the Deutscher Wetterdienst. Impact of the thinning on the analysed fields and on the subsequent forecasts is discussed.</dcterms:abstract> <dc:contributor>Gebhardt, Christoph</dc:contributor> <dcterms:title>Adaptive thinning of atmospheric observations in data assimilation with vector quantization and filtering methods</dcterms:title> <dc:language>eng</dc:language> <dc:contributor>Saupe, Dietmar</dc:contributor> <dcterms:bibliographicCitation>Quarterly Journal of the Royal Meteorological Society ; 131 (2005), 613. - S. 3427-3437 (Part C)</dcterms:bibliographicCitation> <dc:creator>Gebhardt, Christoph</dc:creator> <dc:creator>Wergen, Werner</dc:creator> <dc:creator>Ochotta, Tilo</dc:creator> <dc:rights>deposit-license</dc:rights> <dc:creator>Saupe, Dietmar</dc:creator> <dc:contributor>Ochotta, Tilo</dc:contributor> <dc:contributor>Wergen, Werner</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-07-25T07:32:29Z</dcterms:available> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/24078"/> <dcterms:rights rdf:resource="http://nbn-resolving.org/urn:nbn:de:bsz:352-20140905103605204-4002607-1"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-07-25T07:32:29Z</dc:date> </rdf:Description> </rdf:RDF>

Dateiabrufe seit 01.10.2014 (Informationen über die Zugriffsstatistik)

Ochotta_240780.pdf 91

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto