Convex entropy, Hopf bifurcation, and viscous and inviscid shock stability

Zitieren

Dateien zu dieser Ressource

Dateien Größe Format Anzeige

Zu diesem Dokument gibt es keine Dateien.

BARKER, Blake, Heinrich FREISTÜHLER, Kevin ZUMBRUN, 2012. Convex entropy, Hopf bifurcation, and viscous and inviscid shock stability

@unpublished{Barker2012Conve-23632, title={Convex entropy, Hopf bifurcation, and viscous and inviscid shock stability}, year={2012}, author={Barker, Blake and Freistühler, Heinrich and Zumbrun, Kevin} }

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/23632"> <dc:creator>Freistühler, Heinrich</dc:creator> <dc:creator>Barker, Blake</dc:creator> <dc:contributor>Zumbrun, Kevin</dc:contributor> <dcterms:abstract xml:lang="eng">We consider by a combination of analytical and numerical techniques some basic questions regarding the relations between inviscid and viscous stability and existence of a convex entropy. Specifically, for a system possessing a convex entropy, in particular for the equations of gas dynamics with a convex equation of state, we ask: (i) can inviscid instability occur? (ii) can there occur viscous instability not detected by inviscid theory? (iii) can there occur the - necessarily viscous - effect of Hopf bifurcation, or "galloping instability"? and, perhaps most important from a practical point of view, (iv) as shock amplitude is increased from the (stable) weak-amplitude limit, can there occur a first transition from viscous stability to instability that is not detected by inviscid theory? We show that (i) does occur for strictly hyperbolic, genuinely nonlinear gas dynamics with certain convex equations of state, while (ii) and (iii) do occur for an artifically constructed system with convex viscosity-compatible entropy. We do not know of an example for which (iv) occurs, leaving this as a key open question in viscous shock theory, related to the principal eigenvalue property of Sturm Liouville and related operators. In analogy with, and partly proceeding close to, the analysis of Smith on (non-)uniqueness of the Riemann problem, we obtain convenient criteria for shock (in)stability in the form of necessary and sufficient conditions on the equation of state.</dcterms:abstract> <dcterms:issued>2012</dcterms:issued> <dc:rights>deposit-license</dc:rights> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-06-14T06:04:41Z</dc:date> <dc:contributor>Barker, Blake</dc:contributor> <dcterms:rights rdf:resource="http://nbn-resolving.org/urn:nbn:de:bsz:352-20140905103605204-4002607-1"/> <dc:contributor>Freistühler, Heinrich</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-06-14T06:04:41Z</dcterms:available> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/23632"/> <dc:creator>Zumbrun, Kevin</dc:creator> <dc:language>eng</dc:language> <dcterms:title>Convex entropy, Hopf bifurcation, and viscous and inviscid shock stability</dcterms:title> </rdf:Description> </rdf:RDF>

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto