On varieties of Hilbert type

Zitieren

Dateien zu dieser Ressource

Dateien Größe Format Anzeige

Zu diesem Dokument gibt es keine Dateien.

BARY-SOROKER, Lior, Arno FEHM, Sebastian PETERSEN, 2013. On varieties of Hilbert type

@unpublished{Bary-Soroker2013varie-23524, title={On varieties of Hilbert type}, year={2013}, author={Bary-Soroker, Lior and Fehm, Arno and Petersen, Sebastian} }

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/23524"> <dc:creator>Fehm, Arno</dc:creator> <dcterms:rights rdf:resource="http://nbn-resolving.org/urn:nbn:de:bsz:352-20140905103605204-4002607-1"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/23524"/> <dc:contributor>Petersen, Sebastian</dc:contributor> <dcterms:abstract xml:lang="eng">A variety X over a field K is of Hilbert type if the set of rational points X(K) is not thin. We prove that if f: X\to S is a dominant morphism of K-varieties and both S and all fibers f^{-1}(s), s in S(K), are of Hilbert type, then so is X. We apply this to answer a question of Serre on products of varieties and to generalize a result of Colliot-Th'el`ene and Sansuc on algebraic groups.</dcterms:abstract> <dc:creator>Bary-Soroker, Lior</dc:creator> <dc:language>eng</dc:language> <dcterms:title>On varieties of Hilbert type</dcterms:title> <dc:contributor>Bary-Soroker, Lior</dc:contributor> <dc:rights>deposit-license</dc:rights> <dc:creator>Petersen, Sebastian</dc:creator> <dc:contributor>Fehm, Arno</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-06-05T09:19:10Z</dcterms:available> <dcterms:issued>2013</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-06-05T09:19:10Z</dc:date> </rdf:Description> </rdf:RDF>

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto