Split embedding problems over the open arithmetic disc

Zitieren

Dateien zu dieser Ressource

Dateien Größe Format Anzeige

Zu diesem Dokument gibt es keine Dateien.

FEHM, Arno, Elad PARAN, 2012. Split embedding problems over the open arithmetic disc

@unpublished{Fehm2012Split-23510, title={Split embedding problems over the open arithmetic disc}, year={2012}, author={Fehm, Arno and Paran, Elad} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/23510"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-06-04T10:20:19Z</dc:date> <dcterms:issued>2012</dcterms:issued> <dc:creator>Fehm, Arno</dc:creator> <dc:language>eng</dc:language> <dc:rights>deposit-license</dc:rights> <dc:contributor>Fehm, Arno</dc:contributor> <dc:creator>Paran, Elad</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/23510"/> <dc:contributor>Paran, Elad</dc:contributor> <dcterms:title>Split embedding problems over the open arithmetic disc</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-06-04T10:20:19Z</dcterms:available> <dcterms:rights rdf:resource="http://nbn-resolving.org/urn:nbn:de:bsz:352-20140905103605204-4002607-1"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dcterms:abstract xml:lang="eng">Let Z{t} be the ring of arithmetic power series that converge on the complex open unit disc. A classical result of Harbater asserts that every finite group occurs as a Galois group over the quotient field of Z{t}. We strengthen this by showing that every finite split embedding problem over Q acquires a solution over this field. More generally, we solve all t-unramified finite split embedding problems over the quotient field of O{t}, where O is the ring of integers of an arbitrary number field K.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> </rdf:Description> </rdf:RDF>

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto