Type of Publication: | Preprint |
Author: | Fehm, Arno; Paran, Elad |
Year of publication: | 2012 |
ArXiv-ID: | arXiv:1208.1044 |
Summary: |
Let Z{t} be the ring of arithmetic power series that converge on the complex open unit disc. A classical result of Harbater asserts that every finite group occurs as a Galois group over the quotient field of Z{t}. We strengthen this by showing that every finite split embedding problem over Q acquires a solution over this field. More generally, we solve all t-unramified finite split embedding problems over the quotient field of O{t}, where O is the ring of integers of an arbitrary number field K.
|
Subject (DDC): | 510 Mathematics |
Bibliography of Konstanz: | Yes |
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |
FEHM, Arno, Elad PARAN, 2012. Split embedding problems over the open arithmetic disc
@unpublished{Fehm2012Split-23510, title={Split embedding problems over the open arithmetic disc}, year={2012}, author={Fehm, Arno and Paran, Elad} }
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/23510"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-06-04T10:20:19Z</dc:date> <dcterms:issued>2012</dcterms:issued> <dc:creator>Fehm, Arno</dc:creator> <dc:language>eng</dc:language> <dc:contributor>Fehm, Arno</dc:contributor> <dc:creator>Paran, Elad</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/23510"/> <dc:contributor>Paran, Elad</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dcterms:title>Split embedding problems over the open arithmetic disc</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-06-04T10:20:19Z</dcterms:available> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dcterms:abstract xml:lang="eng">Let Z{t} be the ring of arithmetic power series that converge on the complex open unit disc. A classical result of Harbater asserts that every finite group occurs as a Galois group over the quotient field of Z{t}. We strengthen this by showing that every finite split embedding problem over Q acquires a solution over this field. More generally, we solve all t-unramified finite split embedding problems over the quotient field of O{t}, where O is the ring of integers of an arbitrary number field K.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> </rdf:Description> </rdf:RDF>