Split embedding problems over the open arithmetic disc

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

FEHM, Arno, Elad PARAN, 2012. Split embedding problems over the open arithmetic disc

@unpublished{Fehm2012Split-23510, title={Split embedding problems over the open arithmetic disc}, year={2012}, author={Fehm, Arno and Paran, Elad} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/23510"> <dcterms:rights rdf:resource="https://kops.uni-konstanz.de/page/termsofuse"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-06-04T10:20:19Z</dc:date> <dcterms:issued>2012</dcterms:issued> <dc:creator>Fehm, Arno</dc:creator> <dc:language>eng</dc:language> <dc:contributor>Fehm, Arno</dc:contributor> <dc:creator>Paran, Elad</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/23510"/> <dc:contributor>Paran, Elad</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dcterms:title>Split embedding problems over the open arithmetic disc</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-06-04T10:20:19Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dcterms:abstract xml:lang="eng">Let Z{t} be the ring of arithmetic power series that converge on the complex open unit disc. A classical result of Harbater asserts that every finite group occurs as a Galois group over the quotient field of Z{t}. We strengthen this by showing that every finite split embedding problem over Q acquires a solution over this field. More generally, we solve all t-unramified finite split embedding problems over the quotient field of O{t}, where O is the ring of integers of an arbitrary number field K.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


Browse

My Account