Semidefinite representation for convex hulls of real algebraic curves

Zitieren

Dateien zu dieser Ressource

Dateien Größe Format Anzeige

Zu diesem Dokument gibt es keine Dateien.

SCHEIDERER, Claus, 2012. Semidefinite representation for convex hulls of real algebraic curves

@unpublished{Scheiderer2012Semid-23348, title={Semidefinite representation for convex hulls of real algebraic curves}, year={2012}, author={Scheiderer, Claus} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/23348"> <dcterms:rights rdf:resource="http://nbn-resolving.org/urn:nbn:de:bsz:352-20140905103605204-4002607-1"/> <dcterms:title>Semidefinite representation for convex hulls of real algebraic curves</dcterms:title> <dcterms:issued>2012</dcterms:issued> <dc:language>eng</dc:language> <dc:creator>Scheiderer, Claus</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-06-04T10:14:28Z</dcterms:available> <dc:rights>deposit-license</dc:rights> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:contributor>Scheiderer, Claus</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/23348"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-06-04T10:14:28Z</dc:date> <dcterms:abstract xml:lang="eng">We prove that the closed convex hull of any one-dimensional semi-algebraic subset of R^n has a semidefinite representation, meaning that it can be written as a linear projection of the solution set of some linear matrix inequality. This is proved by an application of the moment relaxation method. Given a nonsingular affine real algebraic curve C and a compact semi-algebraic subset K of its R-points, the preordering P(K) of all regular functions on C that are nonnegative on K is known to be finitely generated. We prove that P(K) is stable, which means that uniform degree bounds exist for representing elements of P(K). We also extend this last result to the case where K is only virtually compact. The main technical tool for the proof of stability is the archimedean local-global principle. As a consequence from our results we establish the Helton-Nie conjecture in dimension two: Every convex semi-algebraic subset of R^2 has a semidefinite representation.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> </rdf:Description> </rdf:RDF>

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto